Answer:
Elastically
Explanation:
A rock that has deformed Elastically under stress keeps its new shape when the stress is released.
In elastic deformation the original shape of the object is regained when the stress is removed. Whereas in plastic deformation the original shape is parmanently deformed with the application of stress.
Answer:
a) W = 6.75 J and b) v = 3.87 m / s
Explanation:
a) In the problem the force is nonlinear and they ask us for work, so we must use it's definition
W = ∫ F. dx
Bold indicates vectors. In a spring the force is applied in the direction of movement, whereby the scalar product is reduced to the ordinary product
W = ∫ F dx
We replace and integrate
W = ∫ (-60 x - 18 x²) dx
W = -60 x²/2 -18 x³/3
Let's evaluate between the integration limits, lower W = 0 for x = -0.50 m, to the upper limit W = W for x = 0 m
W = -30 [0- (-0.50) 2] -6 [0 - (- 0.50) 3]
W = 7.5 - 0.75
W = 6.75 J
b) Work is equal to the variation of kinetic energy
W = ΔK
W = ΔK = ½ m v² -0
v =√ 2W/m
v = √(2 6.75/ 0.90)
v = 3.87 m / s
Answer:
<h2>17.1 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question
3800 g = 3.8 kg
We have
force = 3.8 × 4.5
We have the final answer as
<h3>17.1 N</h3>
Hope this helps you
After thorough researching, the mine tailings must be stored and disposed of carefully because they have lots of chemical and various toxic materials. They can also leach to the aquifers. The correct answer to the following given statement above is they have chemicals which are dangerous.
Answer:
80 amperes
Explanation:
Current in the circuit = ?
Voltage in the circuit = 160 Volts
Resistance = 2 Ω
Voltage = Current x Resistance
V = IR
160V = I x 2 Ω
I = 160V / 2 Ω
I = 80 Amperes
Therefore the current in the circuit is 80 amperes :)