Answer:
12 is a tween (preteen) and still growing, definitely still a kid and not really a teen
Answer:
38 cm from q1(right)
Explanation:
Given, q1 = 3q2 , r = 60cm = 0.6 m
Let that point be situated at a distance of 'x' m from q1.
Electric field must be same from both sides to be in equilibrium(where EF is 0).
=> k q1/x² = k q2/(0.6 - x)²
=> q1(0.6 - x)² = q2(x)²
=> 3q2(0.6 - x)² = q2(x)²
=> 3(0.6 - x)² = x²
=> √3(0.6 - x) = ± x
=> 0.6√3 = x(1 + √3)
=> 1.03/2.73 = x
≈ 0.38 m = 38 cm = x
Given:
v = 50.0 m/s, the launch velocity
θ = 36.9°, the launch angle above the horizontal
Assume g = 9.8 m/s² and ignore air resistance.
The vertical component of the launch velocity is
Vy = (50 m/s)*sin(50°) = 30.02 m/s
The time, t, to reach maximum height is given by
(30.02 m/s) - (9.8 m/s²)*(t s) = 0
t = 3.0634 s
The time fo flight is 2*t = 6.1268 s
The horizontal velocity is
u = (50 m/s)cos(36.9°) = 39.9842 m/s
The horizontal distance traveled at time t is given in the table below.
Answer:
t, s x, m
------ --------
0 0
1 39.98
2 79.79
3 112.68
4 159.58
5 199.47
6 239.37
When designing tires for a car, an engineer must consider the materials that will be used to fabricate the tires ... both the suitability of the materials for the purpose, and their cost.
For example, the engineer should not design car tires to be made of glass or of silk, since these would not hold up well when driving on concrete roads, and they would need to be replaced too often.
For another example, he should not design car tires to be made of gold or polished diamond, since these would be beyond the price range of most car owners, and also, these tires would be very susceptible to being stolen by nefarious and dishonest individuals in the middle of the night.
.
I hope this answer is helpful. The question you posted is a very difficult one, because there are no answer choices listed, and also because the question has the mysterious unknown term "the following" in it.
Answer is a) the force caused by the wend nag encountering wind and air.