Answer:
As each mower presumably needs the same torque to start, and torque is a product of force and moment arm, the longer moment arm of 10.42 cm on Uwi's mower means lower force is required when compared to Urippe's shorter moment arm of 1.35 cm
350 rev/min = 350(2π) / 60 = 36.652 rad/s
36.652 rad/s / 0.294 s = 124.66... <u>125 rad/s²</u>
a = αR = 125(0.1042) = 12.990... <u>13 m/s²</u>
a = αR = 125(0.0135) = 1.68299... <u>1.7 m/s²</u>
I am GUESSING that we are supposed to model these mowers as a uniform disk
τ = Iα
FR = (½mr²)α
F = mr²α/2R
Urippe's pull = (3.56)(0.2041²)(124.66) / (2(0.0135)) = 702.008... <u>702 N</u>
Usi's pull = (3.56)(0.2041²)(124.66) / (2(0.1042)) = 90.9511...<u>91.0 N</u>
L = Iω = (½(3.56)(0.2041²))36.652 = 2.71771...<u>2.72 kg•m²/s down</u>
using the right hand rule
Explanation:
Vectors are quantities that has both magnitude and direction. A vector is described in terms of quantity and the direction it is headed.
There are different forms of vectors that are used in our daily life.
- When we describe the motion of a car and the direction it is heading, we are simply talking about its velocity which is a vector.
- When we say James treks 2km from his school to the house everyday, we are simply describing his displacement.
- When we apply a force to push the table from one corner of the room to another point, is simply a vector
- When we change position, it is a vector application.
Answer:9A
Explanation:
let the last wire be wire C
According to Kirchhoff's rule
the sum of all currents entering a junction must be equal to the sum of all currents leaving a junction
Ic=Ia+Ib
Ic= 4+5
Ic=9A
D). located out side the nucleus
Answer:
C
Explanation:
Ur welcome just took on test