Answer:
Time to pass the train=0.05 h
How far the car traveled in this time=4.75 Km
Explanation:
We have that the train and the car are moving in the same direction, the difference between the speed of the vehicles is:

We will use this difference in the speed of the car an train to calculate how much time take the car to pass the train. For this we have that the train is 1km long and the car is moving with a speed of 20km/h (we use this value because is the speed that the car have in advantage of the train) then for a movement with a constant speed we have:

Where x is the distance, t is the time and v is the speed. using the data that we have:

This is the time that the car take to pass the train. Now to calculate how far the car have traveled in this time we have to considered the speed of 95Km/h of the car, then:

Answer:
Solid sphere
Explanation:
The solid sphere will have a lower moment of inertia as it carries more mass closer to the axis of rotation.
A lower moment of inertia results in a higher angular acceleration under a given torque.
α = τ/I
With an average surface temperature of about 737 K, Venus is the hottest planet.
While Mercury is closest to the sun, it has gaseous molecules that protect it. Venus is the second closest planet to the sun, and is the hottest planet.
Answer:
dx/Dt x B . x =0
Explanation:
Let's calculate the work and the magnetic force, the expression for magnetic force is
F = qv x B
Bold indicate vector quantities, the expression for the job is
W = F. X
Let's replace in this equation
W = q v x B . X
The definition of speed is
v = dX / dt
With what work is left
W = q dX / dt x B . X
As we can see the vector product gives us a vector perpendicular to dX and its scalar product by X of zero
Second part
The speed a vector and although the magnitude is constant the change of direction implies a change in the speed.
Let's calculate the magnitudes of speed (speed)
F = qv B sin θ
F = ma
q v B sin θ = ma
a = qvB / m senT
This acceleration is perpendicular to the magnetic field and the velocity, so it does not change if magnitude but its direction, it is directed to the center of the circle.
| v | = q vB/m sin θ
The RATE of change of position is speed.