Energy is the capacity to do work. Energy exists in various forms in the entire universe.
It may be light,sound,electric,magnetic,kinetic,potential,thermal energy etc.
As per the law of conservation of energy, it is neither created not destroyed. It can change from one form to another form.The total energy of the universe is always constant.
The process in which energy will change from one form to another form is called energy conversion.
There is also another terminology for energy conversion called energy transformation.
Energy transference is the process in which energy will be transferred from one body to another body.
Hence the correct answer to this question will be conversion and transformation
Answer:
A. The brakes used a coil system to convert the kinetic energy into potential energy stored in the brakes
Explanation:
Based on the law of conservation of energy, the brakes used a coil system to convert the kinetic energy into potential energy stored in the brakes.
The law of conservation of energy states that energy is neither created nor destroyed in a system but it is transformed from one form to another.
As the airplane slows down, the kinetic energy which is presented in the motion of the plane is gradually converted to potential energy.
The potential energy is the energy due to the position of a body.
An object in motion will continue to move in the same direction and with the same speed unless acted upon by an unbalanced force. states that forces occur as equal and opposite pairs. The strength of the force is related to the mass of the objects and the distance between them.
Answer:
v_f = 3 m/s
Explanation:
From work energy theorem;
W = K_f - K_i
Where;
K_f is final kinetic energy
K_i is initial kinetic energy
W is work done
K_f = ½mv_f²
K_i = ½mv_i²
Where v_f and v_i are final and initial velocities respectively
Thus;
W = ½mv_f² - ½mv_i²
We are given;
W = 150 J
m = 60 kg
v_i = 2 m/s
Thus;
150 = ½×60(v_f² - 2²)
150 = 30(v_f² - 4)
(v_f² - 4) = 150/30
(v_f² - 4) = 5
v_f² = 5 + 4
v_f² = 9
v_f = √9
v_f = 3 m/s
Answer:
1/8 x C
Explanation:
The capacitance of parallel plate capacitor
= ε₀ A /d where A is area of plate and d is distance between plate.
for capacitor 1
C = ε₀ A /d
For capacitor 2
radius = R/2
Area = A / 4
Capacitance
= ε₀ (A/4) x ( 1 / 2d )
= ( 1 / 8) x (ε₀ A /d)
= 1/8 x C