Answer:
t = 5.19 s
Explanation:
We have,
Height of the cliff is 132 m
It is required to find the time taken by the ball to fall to the ground. Let t is the time taken. So, using equation of kinematics as :

So, it will take 5.19 seconds to fall to the ground.
This question is probably referring to heat energy transferring from the car to its surroundings.
The problem is solved and the questions are answered below.
Explanation:
a. To calculate the speed of the 0.66 kg ball just before the collision
V₀ + K₀ = V₁ + K₁
= mgh₀ = 1/2 mv₁²
where, h= r - r cosθ
V = 
V = 2.42 m/s
b. Calculate the speed of the 0.22 kg ball immediately after the collision
y = y₀ + Vy₀t - 1/2 gt²
0 = 1.2 - 1/2 gt²
t = 0.495 s
x = x₀ + Vx₀t
1.4 = 0 + vx₀ (0.495)
Vx₀ = 2.83 m/s
C. To Calculate the speed of the 0.66 kg ball immediately after the collision
m₁ v₁ = m₁ v₃ + m₂ v₄
(0.66)(2.42) = (0.66) v₃ + (0.22)(2.83)
V₃ = 1.48 m/s
D. To Indicate the direction of motion of the 0.66 kg ball immediately after the collision is to the right.
E. To Calculate the height to which the 0.66 kg ball rises after the collision
V₀ + k₀ = V₁ + k₁
1/2 mv₀² = mgh₁
h₁ = v₀²/2 g
= 0.112 m
F. Based on your data, No the collision is not elastic.
Δk = 1/2 m₁v₃² =1/2 m₂v₄² - 1/2 m₁v₁²
= 1/2 (0.66)(1.48)² + 1/2 (0.22)(2.83)² - 1/2 (0.66)(2.42)²
= - 0.329 J
Hence, kinetic energy is not conserved.
Remember that sound intensity decreases in inverse proportion to the distance squared. So, to solve this we are going to use the inverse square formula:

where

is the intensity at distance 2

is the intensity at distance 1

is distance 2

is distance 1
We can infer for our problem that

,

, and

. Lets replace those values in our formula to find

:





dB
We can conclude that the intensity of the sound when is <span>3 m from the source is
30 dB.</span>