Answer:
S = 0.5 km
velocity of motorist = 42.857 km/h
Explanation:
given data
speed = 70 km/h
accelerates uniformly = 90 km/h
time = 8 s
overtakes motorist = 42 s
solution
we know initial velocity u1 of police = 0
final velocity u2 = 90 km/h = 25 mps
we apply here equation of motion
u2 = u1 + at
so acceleration a will be
a =
a = 3.125 m/s²
so
distance will be
S1 = 0.5 × a × t²
S1 = 100 m = 0.1 km
and
S2 = u2 × t
S2 = 25 × 16
S2 = 400 m = 0.4 km
so total distance travel by police
S = S1 + S2
S = 0.1 + 0.4
S = 0.5 km
and
when motorist travel with uniform velocity
than total time = 42 s
so velocity of motorist will be
velocity of motorist = 
velocity of motorist =
velocity of motorist = 42.857 km/h
Answer:

Explanation:
From the question we are told that:
Thickness 
Internal Pressure
Shear stress 
Elastic modulus 
Generally the equation for shear stress is mathematically given by

Where
r_i=internal Radius
Therefore


Generally



Generally the equation for outer diameter is mathematically given by


Therefore
Assuming that the thin cylinder is subjected to integral Pressure
Outer Diameter is

Answer:
the volume of water that will be required to bring these soils to the optimum moisture content is 1859 kL
Explanation:
Given that;
volume of cut = 25,100 m³
Volume of dry soil fill = 23,300 m³
Weight of the soil will be;
⇒ 93% × 18.3 kN/m³ × 23,300 m³
= 0.93 × 426390 kN 3
= 396,542.7 kN
Optimum moisture content = 12.9 %
Required amount of moisture = (12.9 - 8.3)% = 4.6 %
So,
Weight of water required = 4.6% × 396,542.7 = 18241 kN
Volume of water required = 18241 / 9.81 = 1859 m³
Volume of water required = 1859 kL
Therefore, the volume of water that will be required to bring these soils to the optimum moisture content is 1859 kL
Answer:
a cable -stayed bridge has, one or more towers,from which cable support the bridge deck.