1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pogonyaev
3 years ago
14

On a part-time job, you are asked to bring a cylindrical iron rod of density 7800 kg/m3, length 88.8 cm and diameter 2.30 cm fro

m a storage room to a machinist. Calculate the weight of the rod, w. The acceleration due to gravity, g = 9.81 m/s2 .
Physics
1 answer:
vichka [17]3 years ago
4 0

Answer:

w = 28.25 N

Explanation:

To do this, we need to use two expressions.

First, to calculate the weight of any object, we use the 2nd law of newton. In this case, the weight is:

w = m*g  (1)

However we do not have the mass of the rod. We need to calculate that. To calculate the mass, we'll use the expression of density which is:

d = m/V  

From here, we solve for mass:

m = d * V   (2)

Finally, we can know the volume of the rod, because is cylindrical, therefore, the volume of a cylinder is:

V = π * r² * h   (3)

So, in resume, we need to solve for the volume of the rod, then, the mass ans finally the weight. Let's calculate the volume of the rod, converting the units of centimeter to meters, just dividing by 100:

diameter = 2.3 cm ---> radius = 2.3/2 = 1.15 cm -----> 0.0115 m

Length or height = 88.8 cm ----> 0.888 m

Replacing in (3):

V = π * (0.0115)² * 0.888

V = 3.69x10⁻⁴ m

Now, let's use (2) to calculate the mass:

m = 7800 * 3.69x10⁻⁴

m = 2.88 kg

Finally for the weight, we'll use expression (1):

w = 2.88 * 9.81

<h2>w = 28.25 N</h2><h2>And this is the weight of the rod.</h2>
You might be interested in
Physics B 2020 Unit 3 Test
weqwewe [10]

Answer:

1)

When a charge is in motion in a magnetic field, the charge experiences a force of magnitude

F=qvB sin \theta

where here:

For the proton in this problem:

q=1.602\cdot 10^{-19}C is the charge of the proton

v = 300 m/s is the speed of the proton

B = 19 T is the magnetic field

\theta=65^{\circ} is the angle between the directions of v and B

So the force is

F=(1.602\cdot 10^{-19})(300)(19)(sin 65^{\circ})=8.28\cdot 10^{-16} N

2)

The magnetic field produced by a bar magnet has field lines going from the North pole towards the South Pole.

The density of the field lines at any point tells how strong is the magnetic field at that point.

If we observe the field lines around a magnet, we observe that:

- The density of field lines is higher near the Poles

- The density of field lines is lower far from the Poles

Therefore, this means that the magnetic field of a magnet is stronger near the North and South Pole.

3)

The right hand rule gives the direction of the  force experienced by a charged particle moving in a magnetic field.

It can be applied as follows:

- Direction of index finger = direction of motion of the charge

- Direction of middle finger = direction of magnetic field

- Direction of thumb = direction of the force (for a negative charge, the direction must be reversed)

In this problem:

- Direction of motion = to the right (index finger)

- Direction of field = downward (middle finger)

- Direction of force = into the screen (thumb)

4)

The radius of a particle moving in a magnetic field is given by:

r=\frac{mv}{qB}

where here we have:

m=6.64\cdot 10^{-22} kg is the mass of the alpha particle

v=2155 m/s is the speed of the alpha particle

q=2\cdot 1.602\cdot 10^{-19}=3.204\cdot 10^{-19}C is the charge of the alpha particle

B = 12.2 T is the strength of the magnetic field

Substituting, we find:

r=\frac{(6.64\cdot 10^{-22})(2155)}{(3.204\cdot 10^{-19})(12.2)}=0.366 m

5)

The cyclotron frequency of a charged particle in circular motion in a magnetic field is:

f=\frac{qB}{2\pi m}

where here:

q=1.602\cdot 10^{-19}C is the charge of the electron

B = 0.0045 T is the strength of the magnetic field

m=9.31\cdot 10^{-31} kg is the mass of the electron

Substituting, we find:

f=\frac{(1.602\cdot 10^{-19})(0.0045)}{2\pi (9.31\cdot 10^{-31})}=1.23\cdot 10^8 Hz

6)

When a charged particle moves in a magnetic field, its path has a helical shape, because it is the composition of two motions:

1- A uniform motion in a certain direction

2- A circular motion in the direction perpendicular to the magnetic field

The second motion is due to the presence of the magnetic force. However, we know that the direction of the magnetic force depends on the sign of the charge: when the sign of the charge is changed, the direction of the force is reversed.

Therefore in this case, when the particle gains the opposite charge, the circular motion 2) changes sign, so the path will remains helical, but it reverses direction.

7)

The electromotive force induced in a conducting loop due to electromagnetic induction is given by Faraday-Newmann-Lenz:

\epsilon=-\frac{N\Delta \Phi}{\Delta t}

where

N is the number of turns in the loop

\Delta \Phi is the change in magnetic flux through the loop

\Delta t is the time elapsed

From the formula, we see that the emf is induced in the loop (and so, a current is also induced) only if \Delta \Phi \neq 0, which means only if there is a change in magnetic flux through the loop: this occurs if the magnetic field is changing, or if the area of the loop is changing, or if the angle between the loop and the field is changing.

8)

The flux is calculated as

\Phi = BA sin \theta

where

B = 5.5 T is the strength of the magnetic field

A is the area of the coil

\theta=18^{\circ} is the angle between the  direction of the field and the plane of the loop

Here the loop is rectangular with lenght 15 cm and width 8 cm, so the area is

A=(0.15 m)(0.08 m)=0.012 m^2

So the flux is

\Phi = (5.5)(0.012)(sin 18^{\circ})=0.021 Wb

See the last 7 answers in the attached document.

Download docx
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> docx </span>
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> pdf </span>
5 0
3 years ago
Four different resistors have various amounts of electric current flowing through them. Given the values of current I and resist
Artemon [7]

You did not provide the options. However, the options are

I = 6.0, R= 4.0 ohms

I = 9.0, R= 2.0ohms

I = 3.0, R= 2.0ohms

I = 8.0, R= 8.0 ohms

Answer:

The order of  the resistors from the highest to the lowest is:

I = 8.0, R= 8.0 ohms

I = 6.0, R= 4.0 ohms

I = 9.0, R= 2.0ohms

I = 3.0, R= 2.0 ohms

Explanation:

ohm's law states that voltage across a conductor is directly proportional to the current flowing through it.  V = IR

Based on this formula, the voltages in each of the resistors are calculated below from the highest to the lowest

  • For I = 8.0, R= 8.0 ohms

       V = 8 * 8 =64 volts

  •  For I = 6.0, R= 4.0 ohms

      V = 6 * 4 =24 volts

  • For I = 9.0, R= 2.0 ohms

       V = 9 * 2 =18 volts

  • For I = 3.0, R= 2.0 ohms

       V = 3 * 2 =6 volts

3 0
3 years ago
FILL IN THE BLANKS!
Aleksandr [31]
1. First blank is A. Conductors
Second blank is D. Insulators

2. C. Heat
8 0
3 years ago
The electric potential at the surface of a charged conductor _______.
frez [133]

Answer:

The electric potential at the surface of a charged conductor<u> is always such that the potential is zero at all points inside the conductor.</u>

Explanation:

Each point on the surface of a balanced charged conductor has the same electrical potential.

The surface on any charged conductor in electrostatic equilibrium is an equipotential surface. Since the electric field is equal to zero inside the conductor, the electric potential at any point inside and on the surface is equivalent to its value.

6 0
3 years ago
All of the waves in the electromagnetic spectrum are _______ waves.
user100 [1]
Transverse, I think. I may be wrong.
5 0
3 years ago
Read 2 more answers
Other questions:
  • What three forms of kinetic energy can a polyatomic molecule have?
    10·1 answer
  • I have to get this done today 
    8·1 answer
  • Describe the energy transformations that occur in a waterfall...
    12·2 answers
  • At the local playground, a 21-kg child sits on the right end of a horizontal teeter-totter, 1.8 m from the pivot point. On the l
    6·2 answers
  • Can kintic friction affect mechanical energy
    7·1 answer
  • A uniform steel rod of cross-sectional area A is attached to rigid supports and is unstressed at a temperature of 458F. The stee
    13·2 answers
  • 50W of power is generated using 100J of work to move a box onto a shelf. How long did it take to move the box from the floor to
    11·1 answer
  • 1 pc
    5·1 answer
  • What would you do to increase resistance
    8·2 answers
  • As the change in speed at the boundary of two materials is greater what happened to the angle of refraction (please help )
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!