The horizontal force is m*v²/Lh, where m is the total mass. The vertical force is the total weight (233 + 840)N.
<span>Fx = [(233 + 840)/g]*v²/7.5 </span>
<span>v = 32.3*2*π*7.5/60 m/s = 25.37 m/s </span>
<span>The horizontal component of force from the cables is Th + Ti*sin40º and the vertical component of force from the cable is Ta*cos40º </span>
<span>Thh horizontal and vertical forces must balance each other. First the vertical components: </span>
<span>233 + 840 = Ti*cos40º </span>
<span>solve for Ti. (This is the answer to the part b) </span>
<span>Horizontally </span>
<span>[(233 + 840)/g]*v²/7.5 = Th + Ti*sin40º </span>
<span>Solve for Th </span>
<span>Th = [(233 + 840)/g]*v²/7.5 - Ti*sin40º </span>
<span>using v and Ti computed above.</span>
Answer:
Explanation:
The velocity of the vehicle would increase because the the tanks (when filled with water) must have exerted a force which would reduce the velocity of the vehicle at a certain pressure on the gas pedal. Note that force equals mass multiplied by acceleration; as the mass decreases, so the force decreases. Thus, when the mass exerted by this tanks (on the vehicle) decrease as a result of the hole punctured in them, the force exerted by the tanks would also decrease causing an increase in velocity of the pick up truck when the same pressure is applied on the gas pedal throughout (before and after the puncture).
The conservation law that applied here is the law of conservation of energy which states that energy can neither be created nor destroyed but can be transformed from one form to another. This is because the energy the vehicle used in carrying the load (the tanks) was transformed to the energy that resulted in increasing it's velocity (no new energy was formed as the pressure on the gas pedal remained the same).
Well minerals are in the water we drink every Day, even the food we eat. Minerals are contained in rocks so there for both are important to life
As far as I know, elastic distortion (or elastic deformation or temporary distortion) is the case when an object is deformed by virtue of a cause and after the cause is removed, it regains its original shape in a finite amount of time. If it fails to attain its original shape in finite amount of time or takes infinite time it becomes plastic or permanent distortion.
Inelastic materials, simply put, are non elastic materials. They do not show a fixed trend of deformation vs applied force; in fact, they might not deform at all (rigid materials) or the deformation observed is not completely recoverable; on removal of the applied force, the material doesn't return to its original shape, but to a permanent deformed shape. Such materials are called Plastic materials.
A typical material like steel shows all these forms under different conditions of loading (applied force). For extremely low magnitudes of forces, it is practically rigid. Increasing magnitudes of force show a linear elastic response, while further increase show a non-linear, plastic response, till rupture occurs when the material breaks.