1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andreyy89
3 years ago
6

Can you hear this Picture???If you know it, you get it

Physics
1 answer:
Tcecarenko [31]3 years ago
4 0

Answer:

Ah yes.. Beetlejuice

Explanation:

I hear it so well ngl

You might be interested in
A 0.40 kg bead slides on a straight frictionless wire with a velocity of 3.50 cm/s to the right. The
tensa zangetsu [6.8K]

Answer:

Total momentum before collision

P1 =.4 * 3.5 = 1.4       ignoring units here

Total momentum after collision

P2 = .6 * V - .4 * .7 = .6 V - .28

.6 V = 1.4 + .28   momentum before = momentum after

V = 2.8 cm/sec

In 5 sec V moves 2.8 cm/sec * 5 sec = 14 cm

5 0
2 years ago
What does the atomic number tell us about an atom of a certain element?
Setler79 [48]
It tells us the number of protons that are present in the nucleus, the positively charged region of that atom.
4 0
3 years ago
Planet Earth is called the blue planet because it has so much water. Water drives the weather on Earth. What is the energy sourc
Lana71 [14]
B) Energy from the sun is the answer, I am sure;

The water cycle is driven primarily by the energy from the sun
<span>. This </span>solar energy<span> drives the cycle by evaporating water from the oceans, lakes, rivers, and even the soil. Other water moves from plants to the atmosphere through the process of transpiration.</span>

8 0
3 years ago
Read 2 more answers
You are an engineer helping to design a roller coaster that carries passengers down a steep track and around a vertical loop. Th
vova2212 [387]

Answer:

h >5/2r

Explanation:

This problem involves the application of the concepts of force and the work-energy theorem.

The roller coaster undergoes circular motion when going round the loop. For the rider to stay in contact with the cart at all times, the roller coaster must be moving with a minimum velocity v such that at the top the rider is in a uniform circular motion and does not fall out of the cart. The rider moves around the circle with an acceleration a = v²/r. Where r = radius of the circle.

Vertically two forces are acting on the rider, the weight and normal force of the cart on the rider. The normal force and weight are acting downwards at the top. For the rider not to fall out of the cart at the top, the normal force on the rider must be zero. This brings in a design requirement for the roller coaster to move at a minimum speed such that the cart exerts no force on the rider. This speed occurs when the normal force acting on the rider is zero (only the weight of the rider is acting on the rider)

So from newton's second law of motion,

W – N = mv²/r

N = normal force = 0

W = mg

mg = ma = mv²/r

mg = mv²/r

v²= rg

v = √(rg)

The roller coaster starts from height h. Its potential energy changes as it travels on its course. The potential energy decreases from a value mgh at the height h to mg×2r at the top of the loop. No other force is acting on the roller coaster except the force of gravity which is a conservative force so, energy is conserved. Because energy is conserved the total change in the potential energy of the rider must be at least equal to or greater than the kinetic energy of the rider at the top of the loop

So

ΔPE = ΔKE = 1/2mv²

The height at the roller coaster starts is usually higher than the top of the loop by design. So

ΔPE =mgh - mg×2r = mg(h – 2r)

2r is the vertical distance from the base of the loop to the top of the loop, basically the diameter of the loop.

In order for the roller coaster to move smoothly and not come to a halt at the top of the loop, the ΔPE must be greater than the ΔKE at the top.

So ΔPE > ΔKE at the top. The extra energy moves the rider the loop from the top.

ΔPE > ΔKE

mg(h–2r) > 1/2mv²

g(h–2r) > 1/2(√(rg))²

g(h–2r) > 1/2×rg

h–2r > 1/2×r

h > 2r + 1/2r

h > 5/2r

5 0
3 years ago
Read 2 more answers
If the room radius is 4.5 m, and the rotation frequency is 0.8 revolutions per second when the floor drops out, what is the mini
kondaur [170]
<span>The force of static friction F equals the coefficient of friction u times the normal force N the object exerts on the surface: F = uN. N is the centripetal force of the wall on the people; N = ma_N, where m is the mass of the people and a_N is the centripetal acceleration. The people will not slip down if F is greater than the force of gravitation: F = uma_N > mg, or u > g/a_N. a_N is the velocity v of the people squared divided by the radius of the room r: a_N = v^2/r. The circumference of the room is 2 pi r = 28.3 m. So v = 28.3 * 0.8 m/sec = 22.6 m/sec. So a_N = 114 m/sec^2. g = 9.81 m/sec^2, so u must be at least 9.81/114 = 0.086.</span>
3 0
2 years ago
Other questions:
  • HELP ASAP
    9·2 answers
  • What is the mass number of a potassium atom that has 20 neutrons
    5·1 answer
  • Find the electric field at a point midway between two charges of +40.0 × 10−9 c and +60.0 × 10−9 c separated by a distance of 30
    9·1 answer
  • An example of diffusion in your everyday life
    12·1 answer
  • Use the following photoelectric graph to answer the following question:
    5·1 answer
  • Isotopes of elements have different:
    5·2 answers
  • Help me with number 2 please
    15·1 answer
  • A 80 mW laser beam is polarized horizontally. It then passes through two polarizers. The axis of the first polarizer is oriented
    12·1 answer
  • The _______ of a sound wave is defined as the amount of energy passing through a unit area of the wave front in a unit of time.
    15·1 answer
  • Exercice 1
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!