1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rufina [12.5K]
3 years ago
8

Action-reaction forces are not balanced forces because of what?

Physics
1 answer:
lara [203]3 years ago
4 0

Oh but they are !

Newton's 3rd law of motion says that for every action, the <em><u>re</u></em>action is
equal and opposite.  That's as balanced as you can get.


You might be interested in
Would a vibrating proton produce an electromagnetic wave
Anon25 [30]

Answer:

No,

Explanation:

An electromagnetic wave is made of vibrating electric and magnetic fields that continually induce each other; matter is not needed for this to occur.

5 0
3 years ago
Pleaseee HElpp!!!!!!!
lutik1710 [3]

Coulomb's Law

Given:

F = 3.0 x 10^-3 Newton

d = 6.0 x 10^2 meters

Q1 = 3.3x 10^-8 Coulombs

k = 9.0 x 10^9 Newton*m^2/Coulombs^2

Required:

Q2 =?

Formula:

F = k • Q1 • Q2 / d²

Solution:

So, to solve for Q2

 

Q2 = F • d²/ k • Q1

Q2 = (3.0 x 10^-3 Newton) • (6.0 x 10^2 m)² / (9.0 x 10^9 Newton*m²/Coulombs²) • (3.3x 10^-8 Coulombs)

Q2 = (3.0 x 10^-3 Newton) • (360 000 m²) / (297 Newton*m²/Coulombs)

Q2 = 1080 Newton*m²/ (297 Newton*m²/Coulombs)

Then, take the reciprocal of the denominator and start multiplying

Q2 = 1080 • 1 Coulombs/297

Q2 = 1080 Coulombs / 297

Q2 = 3.63636363636 Coulombs

Q2 = 3.64 Coulumbs

6 0
3 years ago
Read 2 more answers
Why do you see colors when you look at reflected light from a cd
Nady [450]
The colors that you see on the CD are created by white light reflecting from ridges in the metal. When light reflects off or passes through something with many small ridges or scratches, you often get rainbow colors and interesting patterns. They are called interference patterns.
4 0
3 years ago
A box of oranges which weighs 83 N is being pushed across a horizontal floor. As it moves, it is slowing at a constant rate of 0
otez555 [7]

The given question is incomplete. The complete question is as follows.

A box of oranges which weighs 83 N is being pushed across a horizontal floor. As it moves, it is slowing at a constant rate of 0.90 m/s each second. The push force has a horizontal component of 20 N and a vertical component of 25 N downward. Calculate the coefficient of kinetic friction between the box and the floor.

Explanation:

The given data is as follows.

    F_{1} = 20 N, F_{2} = 25 N, a = -0.9 m/s^{2}

             W = 83 N

         m = \frac{83}{9.81}

             = 8.46

Now, we will balance the forces along the y-component as follows.

       N = W + F_{2}

           = 83 + 25 = 108 N

Now, balancing the forces along the x component as follows.

       F_{1} - F_{r} = ma

        20 - F_{r} = 8.46 \times (-0.9)

             F_{r} = 7.614 N

Also, we know that relation between force and coefficient of friction is as follows.

             F_{r} = \mu \times N

          \mu = \frac{F_{r}}{N}

                    = \frac{7.614}{108}

                    = 0.0705

Thus, we can conclude that the coefficient of kinetic friction between the box and the floor is 0.0705.

7 0
3 years ago
Read 2 more answers
MATHPHYS CAN U HELP ME PLEASE
ludmilkaskok [199]

Explanation:

(1) The heat added to warm the ice to 0°C is:

q = mCΔT = (0.041 kg) (2090 J/kg/°C) (0°C − (-11°C)) = 942.59 J

The heat added to melt the ice is:

q = mL = (0.041 kg) (3.33×10⁵ J/kg) = 13,653 J

The heat added to warm the water to 100°C is:

q = mCΔT = (0.041 kg) (4186 J/kg/°C) (100°C − 0°C) = 17,162.6 J

The heat added to evaporate the water is:

q = mL = (0.041 kg) (2.26×10⁶ J/kg) = 92,660 J

The heat added to warm the steam to 115°C is:

q = mCΔT = (0.041 kg) (2010 J/kg/°C) (115°C − 100°C) = 1236.15 J

The total heat needed is:

q = 942.59 J + 13,653 J + 17,162.6 J + 92,660 J + 1236.15 J

q = 125,654.34 J

(2) When the first two are mixed:

m C₁ (T₁ − T) + m C₂ (T₂ − T) = 0

C₁ (T₁ − T) + C₂ (T₂ − T) = 0

C₁ (6 − 11) + C₂ (25 − 11) = 0

-5 C₁ + 14 C₂ = 0

C₁ = 2.8 C₂

When the second and third are mixed:

m C₂ (T₂ − T) + m C₃ (T₃ − T) = 0

C₂ (T₂ − T) + C₃ (T₃ − T) = 0

C₂ (25 − 33) + C₃ (37 − 33) = 0

-8 C₂ + 4 C₃ = 0

C₂ = 0.5 C₃

Substituting:

C₁ = 2.8 (0.5 C₃)

C₁ = 1.4 C₃

When the first and third are mixed:

m C₁ (T₁ − T) + m C₃ (T₃ − T) = 0

C₁ (T₁ − T) + C₃ (T₃ − T) = 0

(1.4 C₃) (6 − T) + C₃ (37 − T) = 0

(1.4) (6 − T) + 37 − T = 0

8.4 − 1.4T + 37 − T = 0

2.4T = 45.4

T = 18.9°C

(3) Heat gained by the ice = heat lost by the tea

mL + mCΔT = -mCΔT

m (3.33×10⁵ J/kg) + m (2090 J/kg/°C) (30.8°C − 0°C) = -(0.176 kg) (4186 J/kg/°C) (30.8°C − 32.8°C)

m (397372 J/kg) = 1473.472 J

m = 0.004 kg

m = 4 g

4 grams of ice is melted and warmed to the final temperature, which leaves 128 grams unmelted.

(4) The heat added to warm the ice to 0°C is:

q = mCΔT = (0.028 kg) (2090 J/kg/°C) (0°C − (-67°C)) = 3920.84 J

The heat added to melt the ice is:

q = mL = (0.028 kg) (3.33×10⁵ J/kg) = 9324 J

The heat added to warm the melted ice to T is:

q = mCΔT = (0.028 kg) (4186 J/kg/°C) (T − 0°C) = (117.208 J/°C) T

The heat removed to cool the water to T is:

q = -mCΔT = -(0.505 kg) (4186 J/kg/°C) (T − 27°C)

q = (2113.93 J/°C) (27°C − T) = 57076.11 J − (2113.93 J/°C) T

The heat removed to cool the copper to T is:

q = -mCΔT = -(0.092 kg) (387 J/kg/°C) (T − 27°C)

q = (35.604 J/°C) (27°C − T) = 961.308 J − (35.604 J/°C) T

Therefore:

3920.84 J + 9324 J + (117.208 J/°C) T = 57076.11 J − (2113.93 J/°C) T + 961.308 J − (35.604 J/°C) T

13244.84 J + (117.208 J/°C) T = 58037.418 J − (2149.534 J/°C) T

(2266.742 J/°C) T = 44792.58 J

T = 19.8°C

(5) Kinetic energy of the hammer = heat absorbed by ice

KE = q

½ mv² = mL

½ (0.8 kg) (0.9 m/s)² = m (80 cal/g × 4.186 J/cal × 1000 g/kg)

m = 9.68×10⁻⁷ kg

m = 9.68×10⁻⁴ g

(6) Heat rate = thermal conductivity × area × temperature difference / thickness

q' = kAΔT / t

q' = (1.09 W/m/°C) (4.5 m × 9 m) (10°C − 4°C) / (0.09 m)

q' = 2943 W

After 10.7 hours, the amount of heat transferred is:

q = (2943 J/s) (10.7 h × 3600 s/h)

q = 1.13×10⁸ J

q = 113 MJ

6 0
3 years ago
Other questions:
  • Something that accurately describe atoms
    13·1 answer
  • Holden is trying to determine the velocity of his race car. He went 20 meters east, turned around, and went 40 meters west. He t
    7·2 answers
  • Which type of wall would make the best soundproofing for room
    15·1 answer
  • A stationary front occurs when the boundary surface between two air masses does not _____.
    14·2 answers
  • The electric field, generated by a point charge, has strength of 180,000 N/C at a point 1.50 cm from the point charge. What is t
    11·1 answer
  • A negative charged particle of known magnitude q is placed in a uniform electric field of known strength E. What additional info
    11·1 answer
  • Scientists have changed the model of the atom as they have gathered new evidence. One of the atomic models is shown below.
    7·1 answer
  • A 6.0x10-2kg hollow racquetball with an initial speed of 18.6 m/s collides with a backboard. It rebounds with a speed of 4.6 m/s
    13·1 answer
  • The Gulf Stream has a cooling effect on the climate of nearby land areas. True or False
    10·1 answer
  • What is the value of the thickness of the boundary layer at leading edge of the plate?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!