The rest of the energy that is not transformed into light becomes thermal energy
Answer:
t = 1862 s
Explanation:
To do this, we need first to determine the theorical detention time, which can be determined with the following expression:
t₀ = ∀/Q (1)
Where:
t₀: detention time
∀: Volume of the fluid in the reactor
Q: Flow rate in the reactor
With this time, we must use the following expression to determine the time that the workers will take to vent the tank:
C = C₀ e^(-t/t₀) (2)
From here, we must solve for time t, and the expression will be:
t = ln(C₀/C) * t₀ (3)
Now that we know the expression to use, let's solve for t. Using (1) to determine the detention time, ∀ is 1900 m³, and Q is 2.35 m³/s so:
t₀ = 1900 / 2.35 = 808.51 s
Now, let's solve for the time t. C will be 0.0015 mg/L (or 1.5 mg/m³ cause in 1 m³ we have 1000 L) and C₀ 15 mg/m³:
t = ln(15/1.5) * 808.51
<h2>
t = 1861.66 s or simply 1862 s</h2><h2>
</h2>
Hope this helps
Answer: The oxidation state of selenium in SeO3 is +6
Explanation:
SeO3 is the chemical formula for selenium trioxide.
- The oxidation state of SeO3 = 0 (since it is stable and with no charge)
- the oxidation number of oxygen (O) IN SeO3 is -2
- the oxidation state of selenium in SeO3 = Z (let unknown value be Z)
Hence, SeO3 = 0
Z + (-2 x 3) = 0
Z + (-6) = 0
Z - 6 = 0
Z = 0 + 6
Z = +6
Thus, the oxidation state of selenium in SeO3 is +6
Answer:
Elements and Compounds. Any sample of matter that has the same physical and chemical properties throughout the sample is called a substanceAny sample of matter that has the same physical and chemical properties throughout the sample.
Explanation:
the value of delta H° for aniline = -3201. 5 Kj/mol
<u><em> calculation</em></u>
Step 1: find heat
Q ( heat) = C ( specific heat capacity) x ΔT ( change in temperature)
C= 4.25 kj/c°
ΔT = 69.8-29.5 = 40.3 c°
Q= 4.25 kj/c x 40.3 c = 171.28 kj
Step 2: find the moles of aniline
moles = mass/ molar mass
= 4.98 g/ 93.13 g/mol =0.0535 moles
Step 3 : find delta H
171.28 kj / 0.0535=3201.5 kj/mol
since the reaction is exothermic delta H = -3201.5 Kj/mol