The element "X" is "O" (oxygen).
<h3>Calculation:</h3>
Given,
Chemical formula = Na₂CX₃
Formula mass = 106 amu
Molar mass of Na = 23 amu
Molar mass of C = 12 amu
To find,
Element X =?
We will equate the equation as follows,
2(23) + 12 + 3(y) = 106
46 + 12 + 3y =106
58 + 3y = 106
3y = 106 - 58
3y = 48
y = 48/3
y = 16
We know that Oxygen has molecular mass of 16. Therefore the element "X" is "O".
Learn more about molar mass here:
brainly.com/question/22997914
#SPJ4
Radioactive decay => C = Co { e ^ (- kt) |
Data:
Co = 2.00 mg
C = 0.25 mg
t = 4 hr 39 min
Time conversion: 4 hr 39 min = 4.65 hr
1) Replace the data in the equation to find k
C = Co { e ^ (-kt) } => C / Co = e ^ (-kt) => -kt = ln { C / Co} => kt = ln {Co / C}
=> k = ln {Co / C} / t = ln {2.00mg / 0.25mg} / 4.65 hr = 0.44719
2) Use C / Co = 1/2 to find the hallf-life
C / Co = e ^ (-kt) => -kt = ln (C / Co)
=> -kt = ln (1/2) => kt = ln(2) => t = ln (2) / k
t = ln(2) / 0.44719 = 1.55 hr.
Answer: 1.55 hr
Answer: Another useful feature of the periodic table is that most tables provide all the information you need to balance chemical reactions at a glance. The table tells each element's atomic number and usually its atomic weight. The typical charge of an element is indicated by its group.
Explanation:
Mention four reasons why the poll ordinance failed
The moles of gas in the bottle has been 0.021 mol.
The ideal gas has been given as the gas where there has been negligible amount of interatomic collisions. The ideal gas equation has been given as:

<h3>Computation for the moles of gas</h3>
The gi<em>ve</em>n gas has standard pressure, 
The volume of the gas has been, 
The temperature of the gas has been, 
Substituting the values for the moles of gas, <em>n:</em>
<em />
<em />
The moles of gas in the bottle has been 0.021 mol.
Learn more about ideal gas, here:
brainly.com/question/8711877