Answer:
Given the area A of a flat surface and the magnetic flux through the surface
it is possible to calculate the magnitude
.
Explanation:
The magnetic flux gives an idea of how many magnetic field lines are passing through a surface. The SI unit of the magnetic flux
is the weber (Wb), of the magnetic field B is the tesla (T) and of the area A is (
). So 1 Wb=1 T.m².
For a flat surface S of area A in a uniform magnetic field B, with
being the angle between the vector normal to the surface S and the direction of the magnetic field B, we define the magnetic flux through the surface as:

We are told the values of
and B, then we can calculate the magnitude

Answer:
The inside Pressure of the tank is 
Solution:
As per the question:
Volume of tank, 
The capacity of tank, 
Temperature, T' =
= 299.8 K
Temperature, T =
= 288.2 K
Now, from the eqn:
PV = nRT (1)
Volume of the gas in the container is constant.
V = V'
Similarly,
P'V' = n'RT' (2)
Also,
The amount of gas is double of the first case in the cylinder then:
n' = 2n
![\]frac{n'}{n} = 2](https://tex.z-dn.net/?f=%5C%5Dfrac%7Bn%27%7D%7Bn%7D%20%3D%202)
where
n and n' are the no. of moles
Now, from eqn (1) and (2):


Answer:
<em>The comoving distance and the proper distance scale</em>
<em></em>
Explanation:
The comoving distance scale removes the effects of the expansion of the universe, which leaves us with a distance that does not change in time due to the expansion of space (since space is constantly expanding). The comoving distance and proper distance are defined to be equal at the present time; therefore, the ratio of proper distance to comoving distance now is 1. The scale factor is sometimes not equal to 1. The distance between masses in the universe may change due to other, local factors like the motion of a galaxy within a cluster. Finally, we note that the expansion of the Universe results in the proper distance changing, but the comoving distance is unchanged by an expanding universe.
At the bottom of the tank :
P = ρgH
P = (1000 kg/m³)(10 m/s²)(1 m)
P = 10000 N/m²
F = P • A
F = (10000 N/m²)(1 m²)
F = 10000 N
At the side of the tank :
Pav = ½ρgH
Pav = ½(1000 kg/m³)(10 m/s²)(1 m)
Pav = 5000 N/m²
F = P • A
F = (5000 N/m²)(1 m²)
F = 5000 N
Answer: The formula used to solve the problems related to first law of thermodynamics is 
Explanation:
First law of thermodynamics states that the total energy of the system remains conserved. Energy can neither be destroyed, nor be created but it can only be transformed into one form to another.
Its implication is any change in the internal energy will be either due to heat energy or work energy.
Mathematically,

where, Q = heat energy
W = work energy
= Change in internal energy
Sign convention for these energies:
For Q: Heat absorbed will be positive and heat released will be negative.
For W: Work done by the system is negative and work done on the system is positive.
For
: When negative, internal energy is decreasing and when positive, internal energy is increasing.
Hence, the formula used to solve the problems related to first law of thermodynamics is 