Answer:
a ) 2.68 m / s
b ) 1.47 m
Explanation:
The jumper will go down with acceleration as long as net force on it becomes zero . Net force of (mg - kx ) will act on it where kx is the restoring force acting in upward direction.
At the time of equilibrium
mg - kx = 0
x = mg / k
= (60 x 9.8 ) / 800
= 0.735 m
At this moment , let its velocity be equal to V
Applying conservation of energy
kinetic energy of jumper + elastic energy of cord = loss of potential energy of the jumper
1/2 m V² + 1/2 k x² = mg x
.5 x 60 x V² + .5 x 800 x .735 x .735 = 60 x 9.8 x .735
30 V² + 216.09 = 432.18
V = 2.68 m / s
b ) At lowest point , kinetic energy is zero and loss of potential energy will be equal to stored elastic energy.
1/2 k x² = mgx
x = 2 m g / k
= (2 x 60 x 9.8) / 800
= 1.47 m
Answer:
Lower energy shell which will be nearer to the nucleus.
Explanation:
When electron move from one energy level to another, an electron must gain or lose just the right amount of energy.
When atoms releases energy, electrons move into lower energy levels. The electrons in the shells aways from the nucleus have more energy as compared to the electrons in the nearer shells.
Electrons with the lowest energy are found closest to the nucleus, where the attractive force of the positively charged nucleus is the greatest. Electrons that have higher energy are found further away
C) The president submits the federal budget every year.
Hope this helps you!
Answer:
Mechanical
Explanation:
The tank is at rest. And energy of any substance at rest is known as potential energy.
Now, in forms of energy, potential energy is a type of mechanical energy.
Thus, the correct option is mechanical Energy.