1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zaharov [31]
3 years ago
10

A puck of mass 0.110 kg slides across ice in the positive x-direction with a kinetic friction coefficient between the ice and pu

ck of 0.167. If the puck is moving at an initial speed of 15.0 m/s, find the following.
(a) What is the force of kinetic friction? (Indicate the direction with the sign of your answer.)
N
(b) What is the acceleration of the puck? (Indicate the direction with the sign of your answer.)
m/s2
(c) How long does it take for the puck to come to rest?
s
(d) What distance does the puck travel during that time?
m
(e) What total work does friction do on the puck?
J
(f) What average power does friction generate in the puck during that time?
W
(g) What instantaneous power does friction generate in the puck when the velocity is 4.00 m/s?
W
Physics
1 answer:
lara [203]3 years ago
7 0

Answer:

a) Ffr = -0.18 N

b) a= -1.64 m/s2

c) t = 9.2 s

d) x = 68.7 m.

e) W= -12.4 J

f) Pavg = -1.35 W

g) Pinst = -0.72 W

Explanation:

a)

  • While the puck slides across ice, the only force acting in the horizontal direction, is the force of kinetic friction.
  • This force is the horizontal component of the contact force, and opposes to the relative movement between the puck and the ice surface, causing it to slow down until it finally comes to a complete stop.
  • So, this force can be written as follows, indicating with the (-) that opposes to the movement of the object.

       F_{frk} = -\mu_{k} * F_{n} (1)

       where μk is the kinetic friction coefficient, and Fn is the normal force.

  • Since the puck is not accelerated in the vertical direction, and there are only two forces acting on it vertically (the normal force Fn, upward, and  the weight Fg, downward), we conclude that both must be equal and opposite each other:

      F_{n} = F_{g} = m*g (2)

  • We can replace (2) in (1), and substituting μk by its value, to find the value of the kinetic friction force, as follows:

       F_{frk} = -\mu_{k} * F_{n} = -0.167*9.8m/s2*0.11kg = -0.18 N (3)

b)

  • According Newton's 2nd Law, the net force acting on the object is equal to its mass times the acceleration.
  • In this case, this net force is the friction force which we have already found in a).
  • Since mass is an scalar, the acceleration must have the same direction as the force, i.e., points to the left.
  • We can write the expression for a as follows:

        a= \frac{F_{frk}}{m} = \frac{-0.18N}{0.11kg} = -1.64 m/s2  (4)

c)

  • Applying the definition of acceleration, choosing t₀ =0, and that the puck comes to rest, so vf=0, we can write the following equation:

        a = \frac{-v_{o} }{t} (5)

  • Replacing by the values of v₀ = 15 m/s, and a = -1.64 m/s2, we can solve for t, as follows:

       t =\frac{-15m/s}{-1.64m/s2} = 9.2 s (6)

d)

  • From (1), (2), and (3) we can conclude that the friction force is constant, which it means that the acceleration is constant too.
  • So, we can use the following kinematic equation in order to find the displacement before coming to rest:

        v_{f} ^{2} - v_{o} ^{2} = 2*a*\Delta x  (7)

  • Since the puck comes to a stop, vf =0.
  • Replacing in (7) the values of v₀ = 15 m/s, and a= -1.64 m/s2, we can solve for the displacement Δx, as follows:

       \Delta x  = \frac{-v_{o}^{2}}{2*a} =\frac{-(15.0m/s)^{2}}{2*(-1.64m/s2} = 68.7 m  (8)

e)

  • The total work done by the friction force on the object , can be obtained in several ways.
  • One of them is just applying the work-energy theorem, that says that the net work done on the object is equal to the change in the kinetic energy of the same object.
  • Since the final kinetic energy is zero (the object stops), the total work done by friction (which is the only force that does work, because the weight and the normal force are perpendicular to the displacement) can be written as follows:

W_{frk} = \Delta K = K_{f} -K_{o} = 0 -\frac{1}{2}*m*v_{o}^{2} =-0.5*0.11*(15.0m/s)^{2}   = -12.4 J  (9)

f)

  • By definition, the average power is the rate of change of the energy delivered to an object (in J) with respect to time.
  • P_{Avg} = \frac{\Delta E}{\Delta t}  (10)
  • If we choose t₀=0, replacing (9) as ΔE, and (6) as Δt, and we can write the following equation:

       P_{Avg} = \frac{\Delta E}{\Delta t} = \frac{-12.4J}{9.2s} = -1.35 W (11)

g)

  • The instantaneous power can be deducted from (10) as W= F*Δx, so we can write P= F*(Δx/Δt) = F*v (dot product)
  • Since F is constant, the instantaneous power when v=4.0 m/s, can be written as follows:

       P_{inst} =- 0.18 N * 4.0m/s = -0.72 W (12)

You might be interested in
Froghopper insects have a typical mass of around 11.3 mg and can jump to a height of 58.8 cm. The takeoff velocity is achieved a
allochka39001 [22]

Answer:

2874.33 m/s²

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

g = Acceleration due to gravity = 9.81 m/s²

v^2-u^2=2as\\\Rightarrow a=\frac{v^2-u^2}{2s}\\\Rightarrow a=\frac{v^2-0^2}{2\times h}\\\Rightarrow v^2=2ah\ m/s

Now H-h = 0.588 - 0.002 = 0.586 m

The final velocity will be the initial velocity

v^2-u^2=2as\\\Rightarrow 0^2-u^2=2gs\\\Rightarrow -2ah=2\times g(H-h)\\\Rightarrow -2a0.002=2\times g0.586\\\Rightarrow a=-\frac{0.586\times -9.81}{0.002}\\\Rightarrow a=2874.33\ m/s^2

Acceleration of the frog is 2874.33 m/s²

6 0
3 years ago
Welding, cutting, or heating in any enclosed spaces involving which of the following metals should be performed with local exhau
sweet [91]

steal aluminum iron

4 0
4 years ago
1.In one challenge on the Titan Games, competitors have to lift 200 pounds up a long ramp. Angel is able to move the weight in 4
77julia77 [94]

#1).  Anthony does the same amount of work as Angel, with <em>more power</em>.

#2). Power = (Work)/(Time) = 41,000 J / 500 s  =  <em>82 watts .</em>

#3). Power = (Work) / (Time) = 83 J / 3 sec = <em>27.7 watts</em>

5 0
3 years ago
Read 2 more answers
Which of the following in the list is the best conductor: plastic, metal, styrofoam, or glass?
tensa zangetsu [6.8K]

Answer:

Metal

Explanation:

3 0
3 years ago
Read 2 more answers
Define what is meant by restrictive interventions
zzz [600]
Medical movement for disabilities people
5 0
3 years ago
Other questions:
  • What is the denisty of a 75 g block of wood measuring 12 cm× 8cm× 9cm​
    9·1 answer
  • Derive the following equations for uniformly accelerated motion by graphical method. a) Velocity -time relation b) Position - ti
    15·1 answer
  • Which formula can be used to find the show angle of the resultant vector? A)sin∅=Ry/Rx,B)tan∅=Rx/Ry, C)tan∅=Ry/Rx, D)sin∅=Rx/Ry
    10·2 answers
  • A ball is thrown straight up with a launch of 3 m/s.
    12·1 answer
  • Wood is an example of a translucent material.<br> True<br> False
    15·1 answer
  • Two children sit on different sides of a seesaw. The first child of mass 27 kg sits 1.5 m from the center. How far must the seco
    13·1 answer
  • Which would not provide a useful measurement of temperature?
    11·1 answer
  • HELP ASAP PLS ILL GIVE YOU BRAINLIEST
    7·2 answers
  • There is no law of conservation​
    13·1 answer
  • What is Physics? How is Physics used in your everyday life? Give at least two examples and explain your answer. You need at leas
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!