1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zaharov [31]
3 years ago
10

A puck of mass 0.110 kg slides across ice in the positive x-direction with a kinetic friction coefficient between the ice and pu

ck of 0.167. If the puck is moving at an initial speed of 15.0 m/s, find the following.
(a) What is the force of kinetic friction? (Indicate the direction with the sign of your answer.)
N
(b) What is the acceleration of the puck? (Indicate the direction with the sign of your answer.)
m/s2
(c) How long does it take for the puck to come to rest?
s
(d) What distance does the puck travel during that time?
m
(e) What total work does friction do on the puck?
J
(f) What average power does friction generate in the puck during that time?
W
(g) What instantaneous power does friction generate in the puck when the velocity is 4.00 m/s?
W
Physics
1 answer:
lara [203]3 years ago
7 0

Answer:

a) Ffr = -0.18 N

b) a= -1.64 m/s2

c) t = 9.2 s

d) x = 68.7 m.

e) W= -12.4 J

f) Pavg = -1.35 W

g) Pinst = -0.72 W

Explanation:

a)

  • While the puck slides across ice, the only force acting in the horizontal direction, is the force of kinetic friction.
  • This force is the horizontal component of the contact force, and opposes to the relative movement between the puck and the ice surface, causing it to slow down until it finally comes to a complete stop.
  • So, this force can be written as follows, indicating with the (-) that opposes to the movement of the object.

       F_{frk} = -\mu_{k} * F_{n} (1)

       where μk is the kinetic friction coefficient, and Fn is the normal force.

  • Since the puck is not accelerated in the vertical direction, and there are only two forces acting on it vertically (the normal force Fn, upward, and  the weight Fg, downward), we conclude that both must be equal and opposite each other:

      F_{n} = F_{g} = m*g (2)

  • We can replace (2) in (1), and substituting μk by its value, to find the value of the kinetic friction force, as follows:

       F_{frk} = -\mu_{k} * F_{n} = -0.167*9.8m/s2*0.11kg = -0.18 N (3)

b)

  • According Newton's 2nd Law, the net force acting on the object is equal to its mass times the acceleration.
  • In this case, this net force is the friction force which we have already found in a).
  • Since mass is an scalar, the acceleration must have the same direction as the force, i.e., points to the left.
  • We can write the expression for a as follows:

        a= \frac{F_{frk}}{m} = \frac{-0.18N}{0.11kg} = -1.64 m/s2  (4)

c)

  • Applying the definition of acceleration, choosing t₀ =0, and that the puck comes to rest, so vf=0, we can write the following equation:

        a = \frac{-v_{o} }{t} (5)

  • Replacing by the values of v₀ = 15 m/s, and a = -1.64 m/s2, we can solve for t, as follows:

       t =\frac{-15m/s}{-1.64m/s2} = 9.2 s (6)

d)

  • From (1), (2), and (3) we can conclude that the friction force is constant, which it means that the acceleration is constant too.
  • So, we can use the following kinematic equation in order to find the displacement before coming to rest:

        v_{f} ^{2} - v_{o} ^{2} = 2*a*\Delta x  (7)

  • Since the puck comes to a stop, vf =0.
  • Replacing in (7) the values of v₀ = 15 m/s, and a= -1.64 m/s2, we can solve for the displacement Δx, as follows:

       \Delta x  = \frac{-v_{o}^{2}}{2*a} =\frac{-(15.0m/s)^{2}}{2*(-1.64m/s2} = 68.7 m  (8)

e)

  • The total work done by the friction force on the object , can be obtained in several ways.
  • One of them is just applying the work-energy theorem, that says that the net work done on the object is equal to the change in the kinetic energy of the same object.
  • Since the final kinetic energy is zero (the object stops), the total work done by friction (which is the only force that does work, because the weight and the normal force are perpendicular to the displacement) can be written as follows:

W_{frk} = \Delta K = K_{f} -K_{o} = 0 -\frac{1}{2}*m*v_{o}^{2} =-0.5*0.11*(15.0m/s)^{2}   = -12.4 J  (9)

f)

  • By definition, the average power is the rate of change of the energy delivered to an object (in J) with respect to time.
  • P_{Avg} = \frac{\Delta E}{\Delta t}  (10)
  • If we choose t₀=0, replacing (9) as ΔE, and (6) as Δt, and we can write the following equation:

       P_{Avg} = \frac{\Delta E}{\Delta t} = \frac{-12.4J}{9.2s} = -1.35 W (11)

g)

  • The instantaneous power can be deducted from (10) as W= F*Δx, so we can write P= F*(Δx/Δt) = F*v (dot product)
  • Since F is constant, the instantaneous power when v=4.0 m/s, can be written as follows:

       P_{inst} =- 0.18 N * 4.0m/s = -0.72 W (12)

You might be interested in
When the distance between two masses is doubled, the gravitational attraction between
mrs_skeptik [129]

The new gravitational attraction will be 1/4 as much

Explanation:

The magnitude of the gravitational force between two objects is given by

F=G\frac{m_1 m_2}{r^2}

where

G=6.67\cdot 10^{-11} m^3 kg^{-1}s^{-2} is the gravitational constant

m1, m2 are the masses of the two objects

r is the separation between them

In this problem, the original force between the two objects is F, when they are separated by a distance r.

Later, the distance between the two objects is doubled, so the new distance is

r'=2r

Therefore, the new force will be

F'=G\frac{m_1 m_2}{(2r)^2}=\frac{1}{4}(\frac{Gm_1 m_2}{r^2})=\frac{F}{4}

Therefore, the new force will be one-fourth as much.

Learn more about gravitational force:

brainly.com/question/1724648

brainly.com/question/12785992

#LearnwithBrainly

5 0
3 years ago
If you rub an inflated balloon against your hair and place it against a door, by what mechanism does it stick? explain.
Snowcat [4.5K]
When you rub inflated balloon with your hair or your kitten's fur, charge is induced on all over the balloon's surface. This is called "charging by friction" because you developed charges by rubbing to bodies with each other. It will also stick on your wall you can check it out. This is because of "unlike charges attract each other". Rubbed balloon and wall possessed unlike charges which made them stick together. 
8 0
4 years ago
Water is a very unique substance because it can exist in all three phases of matter (solid, liquid, gas) within the normal tempe
ahrayia [7]
 the answer is qualitative
5 0
3 years ago
Read 2 more answers
What is the displacement of the armadillo between 0s and 24s ?
Ann [662]

Answer:

Displacement: 6 meters

Distance: 24 meters

Explanation:

4 0
3 years ago
A force of 25N acts on a mass of 5.0kg, initially at rest. Calculate the distance travelled before achieving a velocity of 20m/s
spin [16.1K]

Answer:

40m

Explanation:

let's calculate the acceleration first

force = mass × acceleration

rearranging to find acceleration:

acceleration = force ÷ mass

force = 25N, mass = 5.0kg

acceleration = 25 ÷ 5 = 5ms^-2

we can now use the formula v^2 = u^2 + 2as where v = final velocity, u = initial velocity, a = acceleration and s = distance

rearranging v^2 = u^2 + 2as the distance is

s = (v^2 - u^2) ÷ 2a

v = 20, u = 0, a = 5

s = (20^2 - 0^2) ÷ (2 × 5) = 40m

the distance is 40m

6 0
2 years ago
Other questions:
  • Imagine you are on a bus with a helium balloon tied on a string tied to the seat in front of you. the bus stops short to avoid r
    6·1 answer
  • Why might we expect venus and earth to be similar?
    10·1 answer
  • Water thtat is returned to the environment after secondary treatment is known as _____.
    6·1 answer
  • What four things affect gas pressure?
    15·1 answer
  • -Two pickup trucks each have a mass of 2,000 kg. The gravitational force between the
    8·1 answer
  • What is another word that can be used to describe the position of the<br> object?
    5·1 answer
  • a effort of 100n can raise a load of 2000n in a hydraulic press. calculate the cross-sectional area of a small piston in it. The
    5·1 answer
  • Name the principle which states that energy
    14·2 answers
  • A puck is moving on an air hockey table. Relative to an x, y coordinate system at time t = 0 s, the x components of the puck's i
    13·1 answer
  • A car is being driven along a road at 25m/s when the driver suddenly notices that there is a fallen tree blocking the road 65m a
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!