Answer:
<em>Part A</em><em>:</em>
a) If the wavelength of the light is decreased the fringe spacing Δy will decrease.
<em>Part B</em><em>:</em>
b) If the spacing between the slits is decreased the fringe spacing Δy will increase.
<em>Part C</em><em>:</em>
a) If the distance to the screen is decreased the fringe spacing will decrease.
<em>Part D</em><em>:</em>
The dot in the center of fringe E is
farther from the left slit than from the right slit.
Explanation:
In the double-slit experiment there is a clear contrast between the dark and bright fringes, that indicate destructive and constructive interference respectively, in the central peak and then is less so at either side.
The position of bright fringes in the screen where the pattern is formed can be calculated with


- m is the order number.
is the wavelength of the monochromatic light.- L is the distance between the screen and the two slits.
- d is the distance between the slits.
- Part A: a) In the above equation for the position of bright fringes we can see that if the wavelength of the light
is decreased the overall effect will be that the fringes are going to be closer. That means that the fringe spacing Δy will decrease.
- Part B: b) In the above equation for the position of bright fringes we can see that if the spacing between the slits d is decreased the fringes are going to be wider apart. That means the fringe spacing Δy will increase.
- Part C: a) In the above equation we can see that if the distance to the screen L is decreased the fringes are going to be closer. That means the fringe spacing Δy will decrease.
- Part D: We are told that the central maximum is the fringe C that corresponds with m=0. That means that fringe E corresponds with the order number m=2 if we consider it to be the second maximum at the rigth of the central one. To calculate how much farther from the left slit than from the right slit is a dot located at the center of the fringe E in the screen we use the condition for constructive interference. That says that the path length difference Δr between rays coming from the left and right slit must be
We simply replace the values in that equation :


The dot in the center of fringe E is
farther from the left slit than from the right slit.
Stay at rest unless moved my force! :)
Answer:
Stupid
Explanation:
Because there is never a answer when we are trying to find one
A hydrogen atom in the n=7 state decays to the n=4 state. The wavelength of the photon that the hydrogen atom emits is 4592.59nm.
The Energy of photon is the energy possessed by a photon when it moves from a high energy level to a low energy level. It emits a photon of a certain wavelength. The following relation can be used to find out the relation between the energy levels and the energy possessed:
E = 13.6 × Z² (1/n₂² - 1/n₁²) eV
where, n₁ is the initial energy level i.e. n₁ =7
n₂ is the higher energy level i.e. n₂ = 4
E is the energy possessed
Z is the atomic number, Z = 1 for H-atom
Subsituting in above equation,
E = 13.6 (1/16 - 1/49) eV
E = 0.27 eV
We know that,
E = hc / λ
where, h is Planck constant
c is speed of light
λ is wavelength
On subsituting,
0.27 eV = 1240/ λ
⇒ λ = 4592.59 nm
Hence, the wavelength of photon emitted by Hydrogen atom is 4592.59nm.
Learn more about Energy of Photon here, brainly.com/question/2393994
#SPJ4