The answer would be 6 because 2.0x3= 6
(newton’s 2nd law)
mark me brainliest
A. IMA: 4
The Ideal Mechanical Advantage (IMA) is given by:

where
is the input distance
is the output distance
For the pulley system in this problem,
and
, so the IMA is

B. MA: 3.59
The actual mechanical advantage (AMA), or simply the Mechanical Advantage (MA), is given by

where
is the output force and
is the input force. For the pulley system in this problem,
and
, so the MA is

C. Efficiency: 89.8 %
The efficiency of a machine is equal to the ratio between the MA and the AMA:

Therefore, in this case,

Answer:5.075N
Explanation:
Mass=0.145kg
Acceleration=35m/s^2
Force=mass x acceleration
Force=0.145 x 35
Force=5.075N
Answer:Orbital period =21.22hrs
Explanation:
given that
mass of earth M = 5.97 x 10^24 kg
radius of a satellite's orbit, R= earth's radius + height of the satellite
6.38X 10^6 + 3.25 X10^7 m =3.89 X 10^7m
Speed of satellite, v= 
where G = 6.673 x 10-11 N m2/kg2
V= \sqrt (6.673x10^-11 x 5.97x10^ 24)/(3.89 X 10^ 7m)
V =10,241082.2
v= 3,200.2m/s
a) Orbital period
= 
V= 
T= 2
r/ V
= 2 X 3.142 X 3.89 X 10^7m/ 3,200.2m/s
=76,385.1 s
60 sec= 1min
60mins = 1hr
76,385.1s =hr
76,385.1/3600=21.22hrs
I would go with Segment D.