1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hoa [83]
4 years ago
12

two forces have the same magnitude F, what is the angle between the two vectors if their sum has a magnitude of (a) 2F? (b) sqrt

of 2F (c) zero? Sketch the three vectors in each case. ...?
Physics
1 answer:
kramer4 years ago
5 0
Ok let me help you with this:
<span>
!n case a) Line both up head-to-tail in a straight line... that's the only way to get a sum 2F. In case b) sqrt(2) is the length of the hypotenuse in a 45 degree triangle, so the vectors must be at 90 degrees to each other in the case of c) lined up head to tail, the only way to get 0 is if they point in opposite direction</span>
You might be interested in
Describe at least TWO hazardous conditions that exist in space AND the technological features a spacecraft must have in order to
nexus9112 [7]

gamma radiation and heat flares from the sun, they use refelective gold sheets

3 0
3 years ago
Which term describes the difference in electrical charge across a membrane? View Available Hint(s) Which term describes the diff
Zinaida [17]

Answer:

Membrane potential

Explanation:

Membrane potential is describes the difference in electrical charge across a membrane.                                                                                                              

The difference in potential between exterior  and  interior of the  biological cell is known as Membrane potential.Generally it is denoted by  millivolts like mV and varies from -80 V to -40 V.

So the answer is Membrane potential

4 0
4 years ago
A 2.0-cm-diameter parallel-plate capacitor with a spacing of 0.50 mm is charged to 200 V. What are (a) the total energy stored i
Debora [2.8K]

Answer:

(A) Total energy will be equal to 0.044\times 10^{-5}J

(b) Energy density will be equal to 0.0175J/m^3

Explanation:

We have given diameter of the plate d = 2 cm = 0.02 m

So area of the plate A=\pi r^2=3.14\times 0.02^2=0.001256m^2

Distance between the plates d = 0.50 mm = 0.50\times 10^{-3}m

Permitivity of free space \epsilon _0=8.85\times 10^{-12}F/m

Potential difference V =200 volt

Capacitance between the plate is equal to C=\frac{\epsilon _0A}{d}=\frac{8.85\times 10^{-12}\times 0.001256}{0.50\times 10^{-3}}=0.022\times 10^{-9}F

(a) Total energy stored in the capacitor is equal to

E=\frac{1}{2}CV^2

E=\frac{1}{2}\times 0.022\times 10^{-9}\times 200^2=0.044\times 10^{-5}J

(b) Volume will be equal to V=Ad, here A is area and d is distance between plates

V=0.001256\times 0.02=2.512\times 10^{-5}m^3

So energy density =\frac{Energy}{volume}=\frac{0.044\times 10^{-5}}{2.512\times 10^{-5}}=0.0175J/m^3

7 0
4 years ago
An incident ray that passes through the vertex of a convex lens:
WINSTONCH [101]
The answer is refracts parallel to the axis of the lens
7 0
3 years ago
A ball is dropped from rest from the top of a building of height h. At the same instant, a second ball is projected vertically u
uranmaximum [27]

Answer:

a) t = \sqrt{\frac{h}{2g}}

b) Ball 1 has a greater speed than ball 2 when they are passing.

c) The height is the same for both balls = 3h/4.

Explanation:

a) We can find the time when the two balls meet by equating the distances as follows:

y = y_{0_{1}} + v_{0_{1}}t - \frac{1}{2}gt^{2}  

Where:

y_{0_{1}}: is the initial height = h

v_{0_{1}}: is the initial speed of ball 1 = 0 (it is dropped from rest)

y = h - \frac{1}{2}gt^{2}     (1)

Now, for ball 2 we have:

y = y_{0_{2}} + v_{0_{2}}t - \frac{1}{2}gt^{2}    

Where:

y_{0_{2}}: is the initial height of ball 2 = 0

y = v_{0_{2}}t - \frac{1}{2}gt^{2}    (2)

By equating equation (1) and (2) we have:

h - \frac{1}{2}gt^{2} = v_{0_{2}}t - \frac{1}{2}gt^{2}

t=\frac{h}{v_{0_{2}}}

Where the initial velocity of the ball 2 is:

v_{f_{2}}^{2} = v_{0_{2}}^{2} - 2gh

Since v_{f_{2}}^{2} = 0 at the maximum height (h):

v_{0_{2}} = \sqrt{2gh}

Hence, the time when they pass each other is:

t = \frac{h}{\sqrt{2gh}} = \sqrt{\frac{h}{2g}}

b) When they are passing the speed of each one is:

For ball 1:

v_{f_{1}} = - gt = -g*\sqrt{\frac{h}{2g}} = - 0.71\sqrt{gh}

The minus sign is because ball 1 is going down.

For ball 2:

v_{f_{2}} = v_{0_{2}} - gt = \sqrt{2gh} - g*\sqrt{\frac{h}{2g}} = (\sqrt{1} - \frac{1}{\sqrt{2}})*\sqrt{gh} = 0.41\sqrt{gh}

Therefore, taking the magnitude of ball 1 we can see that it has a greater speed than ball 2 when they are passing.

c) The height of the ball is:

For ball 1:

y_{1} = h - \frac{1}{2}gt^{2} = h - \frac{1}{2}g(\sqrt{\frac{h}{2g}})^{2} = \frac{3}{4}h

For ball 2:

y_{2} = v_{0_{2}}t - \frac{1}{2}gt^{2} = \sqrt{2gh}*\sqrt{\frac{h}{2g}} - \frac{1}{2}g(\sqrt{\frac{h}{2g}})^{2} = \frac{3}{4}h

Then, when they are passing the height is the same for both = 3h/4.

I hope it helps you!                  

7 0
3 years ago
Other questions:
  • Find the density of seawater at a depth where the pressure is 680 atm if the density at the surface is 1030 kg/m3. Seawater has
    11·1 answer
  • A rule or principle that describe the behavior of something in nature is a
    12·1 answer
  • (b) The speed of the vehicle is written as 90 km/h. State the speed in SI unit. Show your working in the space below.
    5·2 answers
  • The half life of cobalt-60 is 5.3 years. If a certain rock currently contains 10.0g of cabals -60 how much cobalt-60 will remain
    9·1 answer
  • A bicycle wheel of radius 14 cm is mounted at the middle of an axle 96 cm long. The tire and rim weigh 23 N. The wheel is spun a
    14·1 answer
  • Which of the following chemical equations is unbalanced?
    14·1 answer
  • A net force, the magnitude of which is 3800 N, accelerates a 1260-kg vehicle for 10.0 s. The vehicle travels 50.0 m during this
    11·1 answer
  • Please help ASAP I will mark brainliest
    15·2 answers
  • What landforms are found on the Moon? (Select all that apply.)
    13·1 answer
  • What particles bond together to
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!