1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shusha [124]
3 years ago
14

An astronaut goes out for a space walk. Her mass (including space suit, oxygen tank, etc.) is 100 kg. Suddenly, disaster strikes

and her tether line becomes disconnected, so she is stuck at rest a distance x away from the space craft!
Luckily, you have to know physics to be an astronaut. The astronaut takes off her 15 kg oxygen tank and throws it away from the spacecraft with a speed of 10 m/s. Due to conservation of momentum, she is propelled towards the spacecraft.
The astronaut has 1.5 minutes of oxygen remaining in her space suit to get her back to the craft. What is the maximum distance the astronaut can be away from the spacecraft to make it back before she runs out of oxygen?
Part A: What are the Known Variables and Unknown Variables? list them.
Part B: What are the equations needed to solve this problem?
Part C: Solve the problem.
Physics
1 answer:
Marina CMI [18]3 years ago
6 0

Answer:

<u>Part A:</u>

Unknown variables:

velocity of the astronaut after throwing the tank.

maximum distance the astronaut can be away from the spacecraft to make it back before she runs out of oxygen.

Known variables:

velocity and mass of the tank.

mass of the astronaut after and before throwing the tank.

maximum time it can take the astronaut to return to the spacecraft.

<u>Part B: </u>

To obtain the velocity of the astronaut we use this equation:

-(momentum of the oxygen tank) = momentum of the astronaut

-mt · vt = ma · vt

Where:

mt = mass of the tank

vt = velocity of the tank

ma = mass of the astronaut

va = velocity of the astronaut

To obtain the maximum distance the astronaut can be away from the spacecraft we use this equation:

x = x0 + v · t

Where:

x = position of the astronaut at time t.

x0 = initial position.

v = velocity.

t = time.

<u>Part C:</u>

The maximum distance the astronaut can be away from the spacecraft is 162 m.

Explanation:

Hi there!

Due to conservation of momentum, the momentum of the oxygen tank when it is thrown away must be equal to the momentum of the astronaut but in opposite direction. In other words, the momentum of the system astronaut-oxygen tank is the same before and after throwing the tank.

The momentum of the system before throwing the tank is zero because the astronaut is at rest:

Initial momentum = m · v

Where m is the mass of the astronaut plus the equipment (100 kg) and v is its velocity (0 m/s).

Then:

initial momentum = 0

After throwing the tank, the momentum of the system is the sum of the momentums of the astronaut plus the momentum of the tank.

final momentum = mt · vt + ma · va

Where:

mt = mass of the tank

vt = velocity of the tank

ma = mass of the astronaut

va = velocity of the astronaut

Since the initial momentum is equal to final momentum:

initial momentum = final momentum

0 = mt · vt + ma · va

- mt · vt = ma · va

Now, we have proved that the momentum of the tank must be equal to the momentum of the astronaut but in opposite direction.

Solving that equation for the velocity of the astronaut (va):

- (mt · vt)/ma = va

mt = 15 kg

vt = 10 m/s

ma = 100 kg - 15 kg = 85 kg

-(15 kg · 10 m/s)/ 85 kg = -1.8 m/s

The velocity of the astronaut is 1.8 m/s in direction to the spacecraft.

Let´s place the origin of the frame of reference at the spacecraft. The equation of position for an object moving in a straight line at constant velocity is the following:

x = x0 + v · t

where:

x = position of the object at time t.

x0 = initial position.

v = velocity.

t = time.

Initially, the astronaut is at a distance x away from the spacecraft so that

the initial position of the astronaut, x0, is equal to x.

Since the origin of the frame of reference is located at the spacecraft, the position of the spacecraft will be 0 m.

The velocity of the astronaut is directed towards the spacecraft (the origin of the frame of reference), then, v = -1.8 m/s

The maximum time it can take the astronaut to reach the position of the spacecraft is 1.5 min = 90 s.

Then:

x = x0 + v · t

0 m = x - 1.8 m/s · 90 s

Solving for x:

1.8 m/s · 90 s = x

x = 162 m

The maximum distance the astronaut can be away from the spacecraft is 162 m.

You might be interested in
How to do this, i'm completely lost
vaieri [72.5K]
There are two torques t1 and t2 on the beam due to the weights, one torque t3 due to the weight of the beam, and one torque t4 due to the string.

You need to figure out t4 to know the tension in the string.

Since the whole thing is not moving t1 + t2 + t3 = t4.

torque t = r * F * sinФ = distance from axis of rotation * force * sin (∡ between r and F)

t1 =3.2 * 44g 
t2 = 7 * 49g 
t3 = 3.5 * 24g 

t4 = t1 + t2 + t3 = 5570,118

The t4 also is given by:

t4 = r * T * sin Ф

r = 7
Ф = 32°
T: tension in the string

T = t4 / (r * sinФ)

T = t4 / (7 * sin(32°)) 

T = 1501,6 N

8 0
3 years ago
Los huracanes y tornados se producen por las corrientes de convencion
Montano1993 [528]

Answer:

correct!

Explanation:

4 0
3 years ago
What happens to a light wave when it travels from air into glass?
tino4ka555 [31]
Light is refracted when it crosses the interface from air to glass in which it moves more slowly.
Since the light speed changes at the interface, the wave length of the light must change too. The wave length decreases as the light enter the medium and the light wave changes direction.
7 0
3 years ago
Solve for real t: -25=20t-5t^2
PolarNik [594]
Answer should be <span>t=<span>−<span><span>1<span> or  </span></span>t</span></span></span>=<span>5</span>
3 0
3 years ago
Molly is pulling a cart down the hallway. She stops at each classroom and collects a stack of books from each teacher. After sto
scZoUnD [109]

Answer:

His third law states that for every action or force in nature there is an equal and opposite reaction.

Explanation:

The heavier the books get, the harder it is for Molly to exert enough force to move the cart.

<em>I hope this helps!!!!!!   Please mark me brainliest!!</em>

7 0
2 years ago
Other questions:
  • Which type of energy is thermal energy a form of?
    15·1 answer
  • What causes an atom to be neutral?
    9·1 answer
  • Measuring the amount of deuterium in the universe allows us to set a limit on _________.
    13·1 answer
  • A sample has a mass of 15 g and a volume of 3mL
    11·1 answer
  • An object is situated to the left of a lens. A ray of light from the object is close to and parallel to the principal axis of th
    5·1 answer
  • If he leaves the ramp with a speed of 31.0 m/s and has a speed of 29.5 m/s at the top of his trajectory, determine his maximum h
    15·1 answer
  • The crew of a cargo plane wishes to drop a crate of supplies on a target below. To hit the target, when should the crew drop the
    12·2 answers
  • A plane is traveling with an air velocity of 720 kilometers/hour due east. It experiences a headwind of 16 kilometers/hour. Find
    9·2 answers
  • _____reaches the Earth’s surface through ______, then turns into ______.
    5·1 answer
  • An athlete at the gym holds a 3.0 kg steel ball in his hand. His arm is 60 cm long and has a mass of 3.8 kg, with the center of
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!