Answer:
Aerobic biological treatment process
Explanation:
Aerobic biological treatment process in which micro-organisms, in the presence of oxygen, metabolize organic waste matter in the water, thereby producing more micro-organisms and inorganic waste matter like CO₂, NH₃ and H₂O.
Answer:
A. Forces that act perpendicular to the surface and pull an object apart exert a tensile stress on the object.
Explanation:
Tensile stress is referred as a deforming force, in which force acts perpendicular to the surface and pull an object apart, attempting to elongate it.
The tensile stress is a type of normal stress, in which a perpendicular force creates the stress to an object’s surface.
Hence, the correct option is "A."
Answer:
The graph representing the linear inequalities is attached below.
Explanation:
The inequalities given are :
y>x-2 and y<x+1
For tables for values of x and y and get coordinates to plot for both equation.
In the first equation;
y>x-2
y=x-2
y-x = -2
The table will be :
x y
-2 -4
-1 -3
0 -2
1 -1
2 0
The coordinates to plot are : (-2,-4) , (-1,-3), (0,-2), (1,-1) ,(2,0)
Use a dotted line and shade the part right hand side of the line.
Do the same for the second inequality equation and plot then shade the part satisfying the inequality.
The graph attached shows results.
Answer:
a)
b)
c)
d)
Explanation:
Non horizontal pipe diameter, d = 25 cm = 0.25 m
Radius, r = 0.25/2 = 0.125 m
Entry temperature, T₁ = 304 + 273 = 577 K
Exit temperature, T₂ = 284 + 273 = 557 K
Ambient temperature,
Pipe length, L = 10 m
Area, A = 2πrL
A = 2π * 0.125 * 10
A = 7.855 m²
Mass flow rate,
Rate of heat transfer,
a) To calculate the convection coefficient relationship for heat transfer by convection:
Note that we cannot calculate the heat loss by the pipe to the environment without first calculating the surface temperature of the pipe.
c) The surface temperature of the pipe:
Smear coefficient of the pipe,
b) Heat loss from the pipe to the environment:
d) The required fan control power is 25.125 W as calculated earlier above
Answer:
Otto engine
Explanation:
As we know that
Power = Torque x speed
So we can say that when speed of engine then power of engine also will increases.
The speed of Otto engine is more as compare to Diesel engine so the power of Otto engine is more.But on the other hand torque of Diesel engine is more as compare to Otto engine but the speed is low so the product of speed and torque is more for Otto engine .It means that when requires large amount of power then Otto engine should be use.