Answer:
0.00650 Ib s /ft^2
Explanation:
diameter ( D ) = 0.71 inches = 0.0591 ft
velocity = 0.90 ft/s ( V )
fluid specific gravity = 0.96 (62.4 ) ( x )
change in pressure ( P ) = 0 because pressure was constant
viscosity = (change in p - X sin∅ )
/ 32 V
= ( 0 - 0.96( 62.4) sin -90 ) * 0.0591 ^2 / 32 * 0.90
= - 59.904 sin (-90) * 0.0035 / 28.8
= 0.1874 / 28.8
viscosity = 0.00650 Ib s /ft^2
Answer:
The correct option is;
Neither Technician A nor B
Explanation:
The evaporative emission monitor or Evaporaive Emission Control System EVAP System monitors enables the Power Control Module of the car to check fuel system leak integrity and the vapor consumption efficiency during engine combustion
It is a requirement of EPA on cars to check the emission of smug forming evaporates from cars
Serious monitor faults can cause the turning on of the check engine lights and the vehicle will not pass OBD II test, but it will not lead to engine shutdown
It runs when the engine is 15 to 85% full and the TP sensor is between 9% and 35%.
Therefore, the correct option is that neither Technician A nor B are correct.
Answer =
dial bore gauge
a “dial bore gauge” measures the inside of round holes, such as the bearing journals . can mesure up to 2” and 6” diameter holes .
when ( “ ) is next to a number it means inches fwi - but hope this helped have a good day :)
Answer:
- the capacity of the pump reduces by 35%.
- the head gets reduced by 57%.
the power consumption by the pump is reduced by 72%
Explanation:
the pump capacity is related to the speed as speed is reduces by 35%
so new speed is (100 - 35) = 65% of orginal speed
speed Q ∝ N ⇒ Q1/Q2 = N1/N2
Q2 = (N2/N1)Q1
Q2 = (65/100)Q1
which means that the capacity of the pump is also reduces by 35%.
the head in a pump is related by
H ∝ N² ⇒ H1/H2 = N1²/N2²
H2 = (N2N1)²H1
H2 = (65/100)²H1 = 0.4225H1
so the head gets reduced by 1 - 0.4225 = 0.5775 which is 57%.
Now The power requirement of a pump is related as
P ∝ N³ ⇒ P1/P2 = N1³/N2³
P2 = (N2/N1)³P1
H2 = (65/100)²P1 = 0.274P1
So the reduction in power is 1 - 0.274 = 0.725 which is 72%
Therefore for a reduction of 35% of speed there is a reduction of 72% of the power consumption by the pump.