Often, the rock layers bookending the mass extinction are noticeably different in their compositions. These changes in the rocks show the effects of environmental disturbances that triggered the mass extinction and sometimes hint at the catastrophic cause of the extinction
Explanation:
mass H2O2 = 55 mL(1.407 g/mL) = 80.85 g
molar mass H2O2 = 2(1.01 g/mol) + 2(16.00 g/mol) = 34.02 g/mol
moles H2O2 = 80.85 g/34.02 g/mol = 2.377 moles H2O2
For each mole of H2O2 you obtain 0.5 mole of O2 (see the equation).
moles O2 = 2.377 moles H2O2 (1 mole O2)/(2 moles H2O2) = 1.188 moles O2
Now, you need the temperature. If you are at STP (273 K, and 1.00 atm) then 1 mole of an ideal gas at STP has a volume of 22.4 L. Without temperature you are not really able to continue. I will assume you are at STP.
Volume O2 = 1.188 moles O2(22.4 L/mole) = 0.0530 L of O2.
which is 53 mL.
Answer:
2.6%
Explanation:
As, 1 ounce (oz) = 0.0625 pounds (lb)
Therefore, weight of baby at discharge = 7 lb,1 oz = 7+0.0625 lb = 7.0625 lb
Since, 1 oz = 0.0625 lb
⇒ 4 oz = 4×0.0625 = 0.25 lb
Therefore, weight of baby at birth = 7 lb,4 oz = 7+0.25 lb = 7.25 lb
The <u>amount of weight lost</u> is equal to the difference of weight of the baby at birth and discharge.
Therefore, <u>weight lost</u> = 7.25 lb - 7.0625 lb = <u>0.1875 lb</u>
Now, the <u>percentage of weight lost</u> by the baby is given by the amount of weight lost divided by the weight of the baby at birth.
Therefore, <u>the percentage of weight los</u>t = weight lost ÷ weight at birth = 0.1875 lb ÷ 7.25 lb × 100 = <u>2.6% </u>
Answer:
fdfdgiukjgrguhjnfvthhhdqddwsvhjjj