Answer:
B. Solids, liquids, and gases.
Explanation:
I have no explanation.
Answer:
The magnitude of change in momentum is (2mv).
Explanation:
The momentum of an object is given by the product of mass and velocity with which it is moving.
Let the mass of ball is m. A tennis player smashes a ball of mass m horizontally at a vertical wall. The ball rebounds at the same speed v with which it struck the wall.
Initial speed of the ball is v and final speed, when it rebounds, is (-v). The change in momentum is given by :
p = final momentum - initial momentum

So, the magnitude of change in momentum is (2mv).
Answer:
yes, if water was stronger then the rocks would not sink.
Explanation:
Answer:
a) Height of the antenna (in m) for a radio station broadcasting at 604 kHz = 124.17 m
b)Height of the antenna (in m) for radio stations broadcasting at 1,710 kHz =43.86 m
Explanation:
(a) Radiowave wavelength= λ = c/f
As we know, Radiowave speed in the air = c = 3 x 10^8 m/s
f = frequency = 604 kHz = 604 x 10^3 Hz
Hence, wavelength = (3x10^8/604x10^3) m
λ
= 496.69 m
So the height of the antenna BROADCASTING AT 604 kHz = λ /4 = (496.69/4) m
= 124.17 m
(b) As we know , f = 1710 kHz = 1710 x 10^3 Hz (1kHZ = 1000 Hz)
Hence, wavelength = λ = (3 x 10^8/1710 x 10^3) m
λ= 175.44 m
So, height of the antenna = λ /4 = (175.44/4) m
= 43.86 m
Answer:
a=0.555m/s^2
Explanation:
First we find the distance traveled from the moment the engineer reacts to the car, assuming uniform movement
X=VT
X=(18)(0.45)=8.1m
then we find the distance at which the deceleration begins, which is obtained by subtracting the total distance with the inner result
X=300-8.1=291.9
finally we use the equation for constant acceleration
Vf=0 final speed
Vo=18m/s= initial speed
X=291.9m
(Vf^2-Vo^2)/2X=a
(0-18^2)/(2*291.9)=a
a=0.555m/s^2