1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
denis-greek [22]
3 years ago
5

8. A 2 kg flower pot weighing 20 N falls from a window ledge.

Physics
1 answer:
Alina [70]3 years ago
8 0

The force of the air resistance is 4 N.

The given parameters;

  • mass of the flower pot, m = 2 kg
  • weight of the flower pot, W = 20 N

Let the air resistance = F

Apply Newton's second law of motion to determine the force of the air resistance acting upward to oppose the motion of the pot falling downwards.

\Sigma F = ma\\\\W - F = ma\\\\a = \frac{W - F}{m} \\\\8 = \frac{20 - F}{2} \\\\20 - F = 16\\\\F = 20 - 16\\\\F = 4 \ N

Thus, the force of the air resistance is 4 N.

Learn more here: brainly.com/question/19887955

You might be interested in
An astronaut has a mass of 75 kg and is floating in space 500 m from his 125,000 kg spacecraft. What will be the force of gravit
nikdorinn [45]

Answer:

1. 2.5×10¯⁹ N

2. 3.33×10¯¹¹ m/s²

Explanation:

1. Determination of the force of attraction.

Mass of astronaut (M₁) = 75 Kg

Mass of spacecraft (M₂) = 125000 Kg

Distance apart (r) = 500 m

Gravitational constant (G) = 6.67×10¯¹¹ Nm²/Kg²

Force of attraction (F) =?

The force of attraction between the astronaut and his spacecraft can be obtained as follow:

F = GM₁M₂ /r²

F = 6.67×10¯¹¹ × 75 × 125000 / 500²

F = 2.5×10¯⁹ N

Thus, the force of attraction between the astronaut and his spacecraft is 2.5×10¯⁹ N

2. Determination of the acceleration of the astronaut.

Mass of astronaut (m) = 75 Kg

Force (F) = 2.5×10¯⁹ N

Acceleration (a) of astronaut =?

The acceleration of the astronaut can be obtained as follow:

F = ma

2.5×10¯⁹ N = 75 × a

Divide both side by 75

a = 2.5×10¯⁹ / 75

a = 3.33×10¯¹¹ m/s²

Thus, the acceleration the astronaut is 3.33×10¯¹¹ m/s²

5 0
3 years ago
A closely wound, circular coil with a diameter of 4.30 cm has 470 turns and carries a current of 0.460 A .
Nadusha1986 [10]

Hi there!

a)
Let's use Biot-Savart's law to derive an expression for the magnetic field produced by ONE loop.

dB = \frac{\mu_0}{4\pi} \frac{id\vec{l} \times \hat{r}}{r^2}

dB = Differential Magnetic field element

μ₀ = Permeability of free space (4π × 10⁻⁷ Tm/A)

R = radius of loop (2.15 cm = 0.0215 m)

i = Current in loop (0.460 A)

For a circular coil, the radius vector and the differential length vector are ALWAYS perpendicular. So, for their cross-product, since sin(90) = 1, we can disregard it.

dB = \frac{\mu_0}{4\pi} \frac{id\vec{l}}{r^2}

Now, let's write the integral, replacing 'dl' with 'ds' for an arc length:
B = \int \frac{\mu_0}{4\pi} \frac{ids}{R^2}

Taking out constants from the integral:
B =\frac{\mu_0 i}{4\pi R^2}  \int ds

Since we are integrating around an entire circle, we are integrating from 0 to 2π.

B =\frac{\mu_0 i}{4\pi R^2}  \int\limits^{2\pi R}_0 \, ds

Evaluate:
B =\frac{\mu_0 i}{4\pi R^2}  (2\pi R- 0) = \frac{\mu_0 i}{2R}

Plugging in our givens to solve for the magnetic field strength of one loop:

B = \frac{(4\pi *10^{-7}) (0.460)}{2(0.0215)} = 1.3443 \mu T

Multiply by the number of loops to find the total magnetic field:
B_T = N B = 0.00631 = \boxed{6.318 mT}

b)

Now, we have an additional component of the magnetic field. Let's use Biot-Savart's Law again:
dB = \frac{\mu_0}{4\pi} \frac{id\vec{l} \times \hat{r}}{r^2}

In this case, we cannot disregard the cross-product. Using the angle between the differential length and radius vector 'θ' (in the diagram), we can represent the cross-product as cosθ. However, this would make integrating difficult. Using a right triangle, we can use the angle formed at the top 'φ', and represent this as sinφ.  

dB = \frac{\mu_0}{4\pi} \frac{id\vec{l} sin\theta}{r^2}

Using the diagram, if 'z' is the point's height from the center:

r = \sqrt{z^2 + R^2 }\\\\sin\phi = \frac{R}{\sqrt{z^2 + R^2}}

Substituting this into our expression:
dB = \frac{\mu_0}{4\pi} \frac{id\vec{l}}{(\sqrt{z^2 + R^2})^2} }(\frac{R}{\sqrt{z^2 + R^2}})\\\\dB = \frac{\mu_0}{4\pi} \frac{iRd\vec{l}}{(z^2 + R^2)^\frac{3}{2}} }

Now, the only thing that isn't constant is the differential length (replace with ds). We will integrate along the entire circle again:
B = \frac{\mu_0 iR}{4\pi (z^2 + R^2)^\frac{3}{2}}} \int\limits^{2\pi R}_0, ds

Evaluate:
B = \frac{\mu_0 iR}{4\pi (z^2 + R^2)^\frac{3}{2}}} (2\pi R)\\\\B = \frac{\mu_0 iR^2}{2 (z^2 + R^2)^\frac{3}{2}}}

Multiplying by the number of loops:
B_T= \frac{\mu_0 N iR^2}{2 (z^2 + R^2)^\frac{3}{2}}}

Plug in the given values:
B_T= \frac{(4\pi *10^{-7}) (470) (0.460)(0.0215)^2}{2 ((0.095)^2 + (0.0215)^2)^\frac{3}{2}}} \\\\ =  0.00006795 = \boxed{67.952 \mu T}

5 0
1 year ago
Read 2 more answers
Why is the likelihood of amajor earthquake along the san andreas fault so worrisome??
Softa [21]
Because a lot of people live along the fault line and there would be lots of death and much property damage.
5 0
3 years ago
The magnitude of electrical force between a pair of charged particles is ____ as much when the particles are moved half as far a
Gnesinka [82]

The magnitude of the electrical force between a pair of charged particles is 4 Times as much when the particles are moved half as far apart.

This can be easily understood by Columb's law,

F_{new} = \frac{kQ_{1}Q_{2}}{r^{2}}

which state's that the amount of electrical force experienced by two charged particles is inversely proportional to the square of the distance between them.

∴ \frac{F_{new} }{F_{old} } = \frac{Distance_{new}^{2}  }{Distance_{old}^{2}  }

Now, we know the new distance is half the original distance,

F_{new} = \frac{kQ_{1}Q_{2}}{\frac{r}{2}^{2} } \\F_{new} = 4\frac{kQ_{1}Q_{2}}{r^{2}}

F_{new} = 4F_{old}

The electrical force of attraction or electrostatic force of attraction between two charged particles refers to the amount of attractive or repulsive force that exists between the two charges. This can be calculated by Columb's Law.

A charged particle in physics is a particle that has an electric charge. It might be an ion, such as a molecule or atom having an excess or shortage of electrons in comparison to protons. The same charge is thought to be shared by an electron, a proton, or another primary particle.

Learn more about electrical force here

brainly.com/question/2526815

#SPJ4

8 0
1 year ago
A bullet of mass 0.1 kg traveling horizontally at a speed of 100 m/s embeds itself in a block of mass 3 kg that is sitting at re
Xelga [282]

Answer:

(a) the speed of the block after the bullet embeds itself in the block is 3.226 m/s

(b) the kinetic energy of the bullet plus the block before the collision is 500J

(c) the kinetic energy of the bullet plus the block after the collision is 16.13J

Explanation:

Given;

mass of bullet, m₁ = 0.1 kg

initial speed of bullet, u₁ = 100 m/s

mass of block, m₂ = 3 kg

initial speed of block, u₂ = 0

Part (A)

Applying the principle of conservation linear momentum, for inelastic collision;

m₁u₁ + m₂u₂ = v(m₁ + m₂)

where;

v is the speed of the block after the bullet embeds itself in the block

(0.1 x 100) + (3 x 0) = v (0.1 + 3)

10 = 3.1v

v = 10/3.1

v = 3.226 m/s

Part (B)

Initial Kinetic energy

Ki = ¹/₂m₁u₁² + ¹/₂m₂u₂²

Ki =  ¹/₂(0.1 x 100²) +  ¹/₂(3 x 0²)

Ki = 500 + 0

Ki = 500 J

Part (C)

Final kinetic energy

Kf = ¹/₂m₁v² + ¹/₂m₂v²

Kf = ¹/₂v²(m₁ + m₂)

Kf = ¹/₂ x 3.226²(0.1 + 3)

Kf = ¹/₂ x 3.226²(3.1)

Kf = 16.13 J

6 0
3 years ago
Other questions:
  • Sound with a frequency of 1250 Hz leaves a room through a doorway with a width of 1.05 m.At what minimum angle relative to the c
    14·1 answer
  • When an electric current flows through a long conductor, each free electron moves
    14·2 answers
  • TESE
    10·1 answer
  • If you kicked your mom <br><br> would she be mad?
    9·1 answer
  • What two quantities are crucial to quantifying the translational kinetic energy of an object?
    12·1 answer
  • What is the gravitational potential energy of a 2.5kg object that is 300m above the surface of the earth? g=10m/s
    5·1 answer
  • Which graph shows the fastest speed?
    9·1 answer
  • Ure
    5·1 answer
  • Which three characteristics make iron a good blackbody radiator?
    7·1 answer
  • An object with projectile motion constantly changes direction.<br> TRUE<br> FALSE
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!