Answer:
4.5s
Explanation:
That must be the right answer.
I think its [B]
Personally i would say [B] only because If you are looking beyond the car in front of you..... then what if the car in front of you throws on breaks... you would hit them in the butt because you weren't paying attention to the car.
And majority of the time if your looking in the lanes beside you then you are most likely trying to get in that lane.
You're answer is B. P waves are more dynamic and have a great autonomy to be able generate a earthquake.
12 V is the f.e.m.

of the battery. The potential difference that is applied to the motor is actually the fem minus the voltage drop on the internal resistance r:

this is equal to the voltage drop on the resistance of the motor R:

so we can write:

and using

and

we can find the current I:
Answer:
a) a = 3.72 m / s², b) a = -18.75 m / s²
Explanation:
a) Let's use kinematics to find the acceleration before the collision
v = v₀ + at
as part of rest the v₀ = 0
a = v / t
Let's reduce the magnitudes to the SI system
v = 115 km / h (1000 m / 1km) (1h / 3600s)
v = 31.94 m / s
v₂ = 60 km / h = 16.66 m / s
l
et's calculate
a = 31.94 / 8.58
a = 3.72 m / s²
b) For the operational average during the collision let's use the relationship between momentum and momentum
I = Δp
F Δt = m v_f - m v₀
F =
F = m [16.66 - 31.94] / 0.815
F = m (-18.75)
Having the force let's use Newton's second law
F = m a
-18.75 m = m a
a = -18.75 m / s²