Answer:
Raster Image Correlation Spectroscopy (RICS) is a novel new technique for measuring molecular dynamics and confocal fluorescence imaging concentrations. RICS technique extracts information on molecular dynamics and concentrations of live cell images taken in commercial confocal systems
Explanation:
RICS analysis must be performed on images acquired through raster scanning. Laser scanning microscopes generate images by measuring the fluorescence intensity in one area of a pixel at a time (a 'pixel' in this context does not have the same definition as a pixel in computer graphics, but refers to a measurement of localized intensity). The value of a pixel is obtained by illuminating a region of the sample with the focal volume of a laser beam and measuring the intensity of the fluorescence emitted. The laser beam moves to a new location and a new pixel is recorded. Each pixel can be considered to correspond to a region of the sample, with its width (called pixel size) defined by the distance the beam moves between measurements. This means that the size of a pixel is separate and independent from the size of the focal volume of the laser beam.
Butane is C₄H₁₀.

The balanced equation is 2 C₄H₁₀ + 13 O₂ <span>→</span> 8 CO₂ + 10 H₂O.
The normal range of creatinine in human blood is between 0.50 mg/dL and 1.1 mg/dL. The patient's blood has a concentration of 0.0082 g/L. Let's convert that value into mg/dL.
We kwnot that there are 1000 mg in 1 g. And there are 10 dL in 1 L. We have to use those conversions.
1000 mg = 1 g 10 dL = 1 L
0.0082 g/L = 0.0082 g/L * 1000 mg/g = 8.2 mg/L * 1 L/ (10 dL) = 0.82 mg/dL
0.0082 g/L = 0.82 mg/dL
0.50 mg/dL < 0.82 mg/dL < 1.1 mg/dL
Answer: The concentration of creatinine = 0.82 mg/dL. It is in the normal range.