Answer:
decrease the height
Explanation:
height is directly proportional to the g.p.e
Answer:
At time 10.28 s after A is fired bullet B passes A.
Passing of B occurs at 4108.31 height.
Explanation:
Let h be the height at which this occurs and t be the time after second bullet fires.
Distance traveled by first bullet can be calculated using equation of motion

Here s = h,u = 450m/s a = -g and t = t+3
Substituting

Distance traveled by second bullet
Here s = h,u = 600m/s a = -g and t = t
Substituting

Solving both equations

So at time 10.28 s after A is fired bullet B passes A.
Height at t = 7.28 s

Passing of B occurs at 4108.31 height.
The situation is impossible mainly because we can't see Figure P6.10 .
It would undoubtedly be the same story on an another planet, until we
see the figure and understand what's going on.
1.96s and 1.86s. The time it takes to a spaceship hovering the surface of Venus to drop an object from a height of 17m is 1.96s, and the time it takes to the same spaceship hovering the surface of the Earth to drop and object from the same height is 1.86s.
In order to solve this problem, we are going to use the motion equation to calculate the time of flight of an object on Venus surface and the Earth. There is an equation of motion that relates the height as follow:

The initial velocity of the object before the dropping is 0, so we can reduce the equation to:

We know the height h of the spaceship hovering, and the gravity of Venus is
. Substituting this values in the equation
:

To calculate the time it takes to an object to reach the surface of Venus dropped by a spaceship hovering from a height of 17m, we have to clear t from the equation above, resulting:
Similarly, to calculate the time it takes to an object to reach the surface of the Earth dropped by a spaceship hovering from a height of 17m, and the gravity of the Earth
.

Answer:
T = 8.55 N
Explanation:
When string makes an angle 40 degree with the vertical then it will have two forces on it
1) gravitational force (mg)
2) Tension force in string (T)
now we know that net force towards the center of the path is known as centripetal force and it is given as




