Answer:
F1=177.88 Newtons
Explanation:
Let's start with the Bernoulli's equation:
![P_{1} + \frac{1}{2}\beta V_{1} ^{2} + \beta gh_{1} =P_{2} + \frac{1}{2}\beta V_{2} ^{2} + \beta gh_{2}](https://tex.z-dn.net/?f=P_%7B1%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%5Cbeta%20V_%7B1%7D%20%5E%7B2%7D%20%2B%20%5Cbeta%20gh_%7B1%7D%20%20%3DP_%7B2%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%5Cbeta%20V_%7B2%7D%20%5E%7B2%7D%20%2B%20%5Cbeta%20gh_%7B2%7D)
Where:
P is pressure, V is Velocity, g is gravity, h is height and β is density (for water β=1000 kg/m3); at the points 1 and 2 respectively.
From the Bernoulli's equation and assuming that h is constant and P2 is zero (from the data), we have:
![P_{1} + \frac{1}{2}\beta V_{1} ^{2} = \frac{1}{2}\beta V_{2} ^{2}](https://tex.z-dn.net/?f=P_%7B1%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%5Cbeta%20V_%7B1%7D%20%5E%7B2%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5Cbeta%20V_%7B2%7D%20%5E%7B2%7D)
As we know, P1 must be equal to
, so, replacing P1 in the equation, we have:
![P_{1} = \frac{F_{1}}{A_{1}} = \frac{1}{2}\beta(V_{2} ^{2} - V_{1} ^{2})](https://tex.z-dn.net/?f=P_%7B1%7D%20%3D%20%5Cfrac%7BF_%7B1%7D%7D%7BA_%7B1%7D%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5Cbeta%28V_%7B2%7D%20%5E%7B2%7D%20-%20V_%7B1%7D%20%5E%7B2%7D%29)
And
![F_{1} = {A_{1}} ( \frac{1}{2}\beta(V_{2} ^{2} - V_{1} ^{2}))](https://tex.z-dn.net/?f=F_%7B1%7D%20%3D%20%7BA_%7B1%7D%7D%20%28%20%5Cfrac%7B1%7D%7B2%7D%5Cbeta%28V_%7B2%7D%20%5E%7B2%7D%20-%20V_%7B1%7D%20%5E%7B2%7D%29%29)
Now, let's find the velocity to replace the values on the expression:
We can express the flow in function of velocity and area as
, where Q is flow, V is velocity and A is area. As the same, we can write this:
. In the last two equations, let's clear Velocities.
![V_{1} = \frac{Q_{1}}{A_{1}}\\V_{2} = \frac{Q_{2}}{A_{2}}](https://tex.z-dn.net/?f=V_%7B1%7D%20%3D%20%5Cfrac%7BQ_%7B1%7D%7D%7BA_%7B1%7D%7D%5C%5CV_%7B2%7D%20%3D%20%5Cfrac%7BQ_%7B2%7D%7D%7BA_%7B2%7D%7D)
and replacing V1 and V2 on the last equation resulting from Bernoulli's (the one that has the force on it):
![F_{1} = {A_{1}} ( \frac{1}{2}\beta((\frac{Q_{2}}{A_{2}})^{2} - (\frac{Q_{1}}{A_{1}})^{2}))](https://tex.z-dn.net/?f=F_%7B1%7D%20%3D%20%7BA_%7B1%7D%7D%20%28%20%5Cfrac%7B1%7D%7B2%7D%5Cbeta%28%28%5Cfrac%7BQ_%7B2%7D%7D%7BA_%7B2%7D%7D%29%5E%7B2%7D%20-%20%28%5Cfrac%7BQ_%7B1%7D%7D%7BA_%7B1%7D%7D%29%5E%7B2%7D%29%29)
First, we have to consider that from a mass balance, the flow is the same, so Q1=Q2, what changes, is the velocity. Knowing this, let's write the areas, diameters, density and flow on International Units System (S.I.), because the exercise is asking us the answer in Newtons.
![D_{1}=1.5 inches=0.0381 mts\\D_{2}=1 inches=0.0254 mts\\A_{1}=\frac{\pi D_{1}^{2} }{4}=0.00114mts^{2}\\A_{2}=\frac{\pi D_{2}^{2} }{4}=0.000507mts^{2}\\\beta=1000 kgs/m^{3}\\Q=200gpm=0.01mts^{3}/seg](https://tex.z-dn.net/?f=D_%7B1%7D%3D1.5%20inches%3D0.0381%20mts%5C%5CD_%7B2%7D%3D1%20inches%3D0.0254%20mts%5C%5CA_%7B1%7D%3D%5Cfrac%7B%5Cpi%20D_%7B1%7D%5E%7B2%7D%20%7D%7B4%7D%3D0.00114mts%5E%7B2%7D%5C%5CA_%7B2%7D%3D%5Cfrac%7B%5Cpi%20D_%7B2%7D%5E%7B2%7D%20%7D%7B4%7D%3D0.000507mts%5E%7B2%7D%5C%5C%5Cbeta%3D1000%20kgs%2Fm%5E%7B3%7D%5C%5CQ%3D200gpm%3D0.01mts%5E%7B3%7D%2Fseg)
Replacing the respective values in this last expression, we obtain:
F1 = 177.88 N