Answer:
electric force of attraction, The work is zero
Explanation:
Between a positive and a negative charge there is an electric force of attraction, as in this case the particle moves in an orbit circulates at a certain velocity at an angle between the displacement and the force is 90, consequently the work defined by
W = F d cos θ
The work is zero, therefore the elective force does not create work on the load.
Answer:
Strong Positive Linear Line Correlation
Explanation:
According to the diagram, there is a strong positive linear line correlation between velocity and distance of galaxies. Hubble showed that galaxies are receding away from people with a velocity that is proportional to their distance from people more distant galaxies recede faster than nearby galaxies.
About the diagram: Velocity is the distance relation among extra-galactic nebulae. Radial velocities is corrected for solar motion, are plotted against distances estimated from involved stars and mean luminosities of nebulae in a cluster. The black discs and full line represent the solution for solar motion by using the nebulae individually; the circles and broken line represent the solution combining the nebulae into groups; the cross represents the mean velocity corresponding to the mean distance of 22 nebulae whose distances could not be estimated individually.
Answer:
Electromagnetic waves
Explanation:
Electromagnetic waves are waves that consist of oscillating electric and magnetic fields, that oscillate perpendicularly to each other and perpendicularly to the direction of propagation of the wave (for such a reason, these waves are also called transverse waves).
Electromagnetic waves always travel in a vacuum at the same speed, called speed of light:

and they are classified into 7 different types, according to their frequency. From lowest to highest frequency, we have:
Radio waves
Microwaves
Infrared
Visible light
Ultraviolet
X-rays
Gamma rays
Therefore, gamma rays, x-rays, visible light and radio waves are all types of electromagnetic waves with different frequencies.
Answer:
The ball will be at 700 m above the ground.
Explanation:
We can use the following kinematic equation
.
where y(t) represent the height from the ground. For our problem, the initial height will be:
.
The initial velocity:
,
take into consideration the minus sign, that appears cause the ball its thrown down. The same minus appears for the acceleration:

So, the equation for our problem its:
.
Taking t=6 s:
.
.
.
.
.
So this its the height of the ball 6 seconds after being thrown.
Sound waves or bounces off the wall and light waves are waves of light