1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex Ar [27]
3 years ago
8

What happens to the effort force as the radius increases?

Physics
1 answer:
zhannawk [14.2K]3 years ago
4 0
<span> is located between the fulcrum and the resistance force -direction of force does

</span>
You might be interested in
What do you think would happen to earth's tides if the moon was not there? the tides would....?
defon
Their are things call solar tides which are the effects of the sun But it would be alot calmer with out the moon.
8 0
3 years ago
Do you think there are other planets outside of our solar system? Support your response with facts
Agata [3.3K]


The habitable zone is the range of distances from a star where a planet’s temperature allows liquid water oceans, critical for life on Earth. The earliest definition of the zone was based on simple thermal equilibrium, but current calculations of the habitable zone include many other factors, including the greenhouse effect of a planet’s atmosphere. This makes the boundaries of a habitable zone "fuzzy."



Astronomers announced in August 2016 that they may have found such a planet orbiting Proxima Centauri. The newfound world, known as Proxima b, is about 1.3 times more massive than Earth, which suggests that the exoplanet is a rocky world, researchers said. The planet is also in the star's habitable zone, just 4.7 million miles (7.5 million kilometers) from its host star. It completes one orbit every 11.2 Earth-days. As a result, it's likely that the exoplanet is tidally locked, meaning it always shows the same face to its host star, just as the moon shows only one face (the near side) to Earth.



The young sun would have had a very strong magnetic field, whose lines of force reached out into the disk of swirling gas from which the planets would form. These field lines connected with the charged particles in the gas, and acted like anchors, slowing down the spin of the forming sun and spinning up the gas that would eventually turn into the planets. Most stars like the sun rotate slowly, so astronomers inferred that the same “magnetic braking” occurred for them, meaning that planet formation must have occurred for them. The implication: Planets must be common around sun-like
A Canadian team discovered a Jupiter-size planet around Gamma Cephei in 1988, but because its orbit was much smaller than Jupiter’s, the scientists did not claim a definitive planet detection. “We weren’t expecting planets like that. It was different enough from a planet in our own solar system that they were cautious," Matthews said.
Most of the first exoplanet discoveries were huge Jupiter-size (or larger) gas giants orbiting close to their parent stars. That's because astronomers were relying on the radial velocity technique, which measures how much a star “wobbles” when a planet or planets orbit it. These large planets close in produce a correspondingly big effect on their parent star, causing an easier-to-detect wobble.
Before the era of exoplanet discoveries, instruments could only measure stellar motions down to a kilometer per second, too imprecise to detect a wobble due to a planet. Now, some instruments can measure velocities as low as a centimeter per second, according to Matthews. “Partly due to better instrumentation, but also because astronomers are now more experienced in teasing subtle signals out of the data.”

Today, there are more than 1,000 confirmed exoplanets discovered by a single telescope: the Kepler space telescope, which reached orbit in 2009 and hunted for habitable planets for four years. Kepler uses a technique called the “transit” method, measuring how much a star's light dims when a planet passes in front of it.

Kepler has revealed a cornucopia of different types of planets. Besides gas giants and terrestrial planets, it has helped define a whole new class known as “super-Earths”: planets that are between the size of Earth and Neptune. Some of these are in the habitable zones of their stars, but astrobiologists are going back to the drawing board to consider how life might develop on such worlds.

In 2014, Kepler astronomers (including Matthews’ former student Jason Rowe) unveiled a “verification by multiplicity” method that should increase the rate at which astronomers promote candidate planets to confirmed planets. The technique is based on orbital stability — many transits of a star occurring with short periods can only be due to planets in small orbits, since multiply eclipsing stars that might mimic would gravitationally eject each other from the system in just a few million years.

While the Kepler (and French CoRoT) planet-hunting satellites have ended their original missions, scientists are still mining the data for discoveries, and there are more to come. MOST is still operating, and the NASA TESS (Transiting Exoplanet Survey Satellite), Swiss CHEOPS (Characterizing ExOPlanets Satellite) and ESA’s PLATO missions will soon pick up the transit search from space. From the ground, the HARPS spectrograph on the European Southern Observatory's La Silla 3.6-meter telescope in Chile is leading the Doppler wobble search, but there are many other telescopes in the hunt.

With almost 2,000 to choose from, it’s hard to narrow down a few. Small solid planets in the habitable zone are automatically standouts, but Matthews singled out five other exoplanets that have expanded our perspective on how planets form and
6 0
3 years ago
Read 2 more answers
What is the final speed of a 60 kg boulder dropped from a 111 meter cliff
saveliy_v [14]

After rolling off the edge of the cliff and falling ' M ' meters down,
the speed of the boulder is

       Square root of ( 19.6 M ) .

If M=111 meters, then the speed is <em>46.64 meters per second</em>.

We have known for roughly 500 years that if there's no air resistance,
the mass of the falling object makes no difference, and all objects fall
with the same acceleration, speed, time to splat, etc.



3 0
3 years ago
In what region of the electromagnetic spectrum is a photon found that possesses twice as much energy as one in the blue region (
iren2701 [21]
<span>The answer is: ultraviolet The energy (E) of a photon is directly proportional to its frequency f, by Planck's formula: E = hf, where h is Planck's constant (6.625 * 10**-34 joule-second). The frequency is inversely proportional to the wavelength w by: f = c/w, where c is the speed of light, 3.0 * 10**8 meters per second. Combine these formulas and we see that the energy is inversely proportional to the wavelength by: E = hc/w If the energy is inversely proportional to the wavelength, a photon with twice the energy has half the wavelength of our 442-nm. photon in this example. So its wavelength is 221 nm. which is in the ultraviolet range.</span>
4 0
3 years ago
Explain the characteristics of the Gypsum Hills regionIf we have a sample of silicon (Si) atoms that has 14 protons, 14 electron
amid [387]

Answer:

second one

Explanation:

8 0
3 years ago
Other questions:
  • A student is trying to determine if a solution is acidic or basic. She does not have any litmus paper. Which would she most like
    12·1 answer
  • Calculate the hydrostatic difference in blood pressure between the brain and the foot in a person of height 1.93 m. The density
    10·1 answer
  • Fn, Friction, (A-D) please help, thank you :).
    11·1 answer
  • 99 POINT QUESTION PLUS BRAINLIEST!!!
    8·2 answers
  • An object has a position given by r = [2.0 m + (5.00 m/s)t] i^ + [3.0m−(2.00 m/s2)t2] j^, where all quantities are in SI units.
    6·1 answer
  • During an experiment, a student moved a cell from pure water to salted water. What will most likely happen to the cell?
    10·1 answer
  • An electric field is = (400 N/C) for x &gt; 0 and = (–400 N/C) for x &lt; 0. A cylinder of length 30 cm and radius 10 cm has its
    10·1 answer
  • Which component of an atom contains the MAJORITY<br> of its mass?
    12·1 answer
  • Which box will not accelerate?
    15·2 answers
  • In the equation y =cnat2 you wish to determine theinteger value (1,2 etc.) of the exponent n. the dimensions ofy, a, and t are k
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!