A roller coaster car starts from the rest from a first summit, descends a vertical distance of 45 meters and then climbs a second summit, reaching the top with a speed of 15m / s. How high is the second summit? Do not consider friction
Answer:
3.28 m
3.28 s
Explanation:
We can adopt a system of reference with an axis along the incline, the origin being at the position of the girl and the positive X axis going up slope.
Then we know that the ball is subject to a constant acceleration of 0.25*g (2.45 m/s^2) pointing down slope. Since the acceleration is constant we can use the equation for constant acceleration:
X(t) = X0 + V0 * t + 1/2 * a * t^2
X0 = 0
V0 = 4 m/s
a = -2.45 m/s^2 (because the acceleration is down slope)
Then:
X(t) = 4*t - 1.22*t^2
And the equation for speed is:
V(t) = V0 + a * t
V(t) = 4 - 2.45 * t
If we equate this to zero we can find the moment where it stops and begins rolling down, that will be the highest point:
0 = 4 - 2.45 * t
4 = 2.45 * t
t = 1.63 s
Replacing that time on the position equation:
X(1.63) = 4 * 1.63 - 1.22 * 1.63^2 = 3.28 m
To find the time it will take to return we equate the position equation to zero:
0 = 4 * t - 1.22 * t^2
Since this is a quadratic equation it will have to answers, one will be the moment the ball was released (t = 0), the other will eb the moment when it returns:
0 = t * (4 - 1.22*t)
t1 = 0
0 = 4 - 1.22*t2
1.22 * t2 = 4
t2 = 3.28 s
Physical and chemical changes are similar because matter experiences a change in state while undergoing either change.
Answer:
You need to give the options but the formula is p=mv
Explanation:
Freezing (liquid to solid)
Deposition (gas to solid)
Condensation (gas to liquid)
All three of these state changes are a result of a energy loss. When considering energy loss it is best to think of situations where temperature has dropped. Less energy in the system results in less energy the substance is exposed to or has available.