Answer:
GRAVITATIONAL FORCE
Explanation:
We may have noticed that a body thrown upward in air falls back down again after attaining a particular height. The object was able to fall down back due to the effect of gravity acting on it. If there are no force of gravity acting on the body, the body will not fall back but rather disappears into the thin air.
A coin tossed upward in the air which falls back down when released is therefore under the influence of gravity i.e GRAVITATIONAL FORCE while it moves upward after it is released
To solve the problem it is necessary to apply the concepts related to the conservation of energy through the heat transferred and the work done, as well as through the calculation of entropy due to heat and temperatra.
By definition we know that the change in entropy is given by

Where,
Q = Heat transfer
T = Temperature
On the other hand we know that by conserving energy the work done in a system is equal to the change in heat transferred, that is

According to the data given we have to,




PART A) The total change in entropy, would be given by the changes that exist in the source and sink, that is



On the other hand,



The total change of entropy would be,



Since
the heat engine is not reversible.
PART B)
Work done by heat engine is given by



Therefore the work in the system is 100000Btu
Answer
m/s rate of change of dispalcement per sec. ie velocity
m/s^2 is (m/s)/s ie rate of change of velocity per sec. ie accelerationplanation:
Answer:
<h2>Changes</h2>
Explanation:
<h3>Variable is something that varies and doesn't remain constant.</h3>
Answer:
a. 2.4 ×109 N ⋅ m2/s
b. 48.3 N⋅s /m2
c. 8.00×104W
Explanation:
See Attached file for explanation