The vertical velocity of the projectile upon returning to its original is 17. 74 m/s
<h3>
How to determine the vertical velocity</h3>
Using the formula:
Vertical velocity component , Vy = V * sin(α)
Where
V = initial velocity = 36. 6 m/s
α = angle of projectile = 29°
Substitute into the formula
Vy = 36. 6 * sin ( 29°)
Vy = 36. 6 * 0. 4848
Vy = 17. 74 m/s
Thus, the vertical velocity of the projectile upon returning to its original is 17. 74 m/s
Learn more about vertical velocity here:
brainly.com/question/24949996
#SPJ1
Answer:
C. The car from driving off the road on a curve
Explanation:
A centripetal force actually causes circular motion. This occurs when an object moves in a circular path or a circle,a force will definitely act on it.
For instance, a car travelling in a circular path must definitely experience this force acting on it, even when the car moves at a constant speed. If it does not exist the object will definitely spin off in a direction tangential to the circular path or curve.
-- The vertical component of the ball's velocity is 14 sin(<span>51°) = 10.88 m/s
-- The acceleration of gravity is 9.8 m/s².
-- The ball rises for 10.88/9.8 seconds, then stops rising, and drops for the
same amount of time before it hits the ground.
-- Altogether, the ball is in the air for (2 x 10.88)/(9.8) = 2.22 seconds
==================================
-- The horizontal component of the ball's velocity is 14 cos(</span><span>51°) = 8.81 m/s
-- At this speed, it covers a horizontal distance of (8.81) x (2.22) = <em><u>19.56 meters</u></em>
before it hits the ground.
As usual when we're discussing this stuff, we completely ignore air resistance.
</span>
Yellow and red hope that helped