Answer:
The first one is the right answer.
Answer:
The scientist will be looking for the velocity of the wave in air which is equivalent to 10^7m/s
Explanation:
If an object in space is giving off a frequency of 10^13Hz and wavelength of 10^-6m then the scientist will be looking for the velocity of the object in air.
The relationship between the frequency (f) of a wave, the wavelength (¶) and the velocity of the wave in air(v) is expressed as;
v = f¶
Given f = 10^13Hz and ¶ = 10^-6m,
v = 10¹³ × 10^-6
v = 10^7 m/s
The value of the velocity of the object in space that the scientist will be looking for is 10^7m/s
Answer:
I think 1,300ft (400m) not entirely sure.
Answer:
the result is the quantization of __Energy__ of the particle
Explanation:
Answer:
I. Friction force exerted on the body is less than 100N
Explanation:
For a body to be static, the moving force must be equal to the frictional force. Since the frictional force is a force of opposition. It tends to oppose the moving force acting on an object.
Hence if the moving force is greater than the force of friction, the Force of fiction will not be able to overcome the moving hence the body will tend to move.
Therefore, for a body to move, Fm > Ff or Ff < Ff
Fm is the moving force
Ff is the force of friction
Given
Fm = 100N
For the 100N body to move the frictional force must be less than 100N