Hello,
Answer: kilogram
Further explaining: in science is used to measure weight of an object and used for accreditation.
Hope this helps!
The new magnitude of the force of attraction will be 6 times the original force of attraction
<h3>How to determine the initial force </h3>
- Mass 1 = m₁
- Mass 2 = m₂
- Gravitational constant = G
- Distance apart = r
- Initial force (F₁) = ?
F = Gm₁m₂ / r²
F₁ = Gm₁m₂ / r²
<h3>How to determine the new force </h3>
- Mass 1 = 2m₁
- Mass 2 = 3m₂
- Gravitational constant = G
- Distance apart (r) = r
- New force (F₂) =?
F = Gm₁m₂ / r²
F₂ = G × 2m₁ × 3m₂ / r²
F₂ = 6Gm₁m₂ / r²
But
F₁ = Gm₁m₂ / r²
Therefore
F₂ = 6Gm₁m₂ / r²
F₂ = 6F₁
Thus, the new magnitude of the force of attraction will be 6 times the original force of attraction
Learn more about gravitational force:
brainly.com/question/21500344
#SPJ1
The net force acting on the car is 65 N to the left
The net force acting on an object is simply defined as the resultant force acting on the object.
From the question given, we obtained the following data:
- Force applied to the right (Fᵣ) = 250 N
- Force applied to the left (Fₗ) = 315 N
- Net force (Fₙ) =?
The net force acting on the car can be obtained as follow:
Fₙ = Fₗ – Fᵣ
Fₙ = 315 – 250
<h3>Fₙ = 65 N to the left </h3>
Therefore, the net force acting on the car is 65 N to the left
Learn more on net force: brainly.com/question/19549734
Explanation:
Given that,
Radius R= 2.00
Charge = 6.88 μC
Inner radius = 4.00 cm
Outer radius = 5.00 cm
Charge = -2.96 μC
We need to calculate the electric field
Using formula of electric field

(a). For, r = 1.00 cm
Here, r<R
So, E = 0
The electric field does not exist inside the sphere.
(b). For, r = 3.00 cm
Here, r >R
The electric field is

Put the value into the formula


The electric field outside the solid conducting sphere and the direction is towards sphere.
(c). For, r = 4.50 cm
Here, r lies between R₁ and R₂.
So, E = 0
The electric field does not exist inside the conducting material
(d). For, r = 7.00 cm
The electric field is

Put the value into the formula


The electric field outside the solid conducting sphere and direction is away of solid sphere.
Hence, This is the required solution.