1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dusya [7]
2 years ago
13

An ordinary flashlight battery has a potential difference of 1.2 V between its positive and negative terminals. How much work mu

st you do to transport an electron from the positive terminal to negative terminal
Physics
1 answer:
Maru [420]2 years ago
4 0

The work done to transport an electron from the positive to the negative terminal is 1.92×10⁻¹⁹ J.

Given:

Potential difference, V = 1.2 V

Charge on an electron, e = 1.6 × 10⁻¹⁹ C

Calculation:

We know that the work done to transport an electron from the positive to the negative terminal is given as:

W.D = (Charge on electron)×(Potential difference)

       = e × V

       = (1.6 × 10⁻¹⁹ C)×(1.2 V)

       = 1.92 × 10⁻¹⁹ J

Therefore, the work done in bringing the charge from the positive terminal to the negative terminal is 1.92 × 10⁻¹⁹ J.

Learn more about work done on a charge here:

<u>brainly.com/question/13946889</u>

#SPJ4

You might be interested in
A horizontal pipe of inner diameter 2.2 cm carries water with a density of 1000.0 kg/m3 flowing at a rate of 1.5 kg/s. If the pi
EleoNora [17]

The speed of the water in the wider part will be 1.194 m/sec. Speed is a time-based quantity. Its SI unit is m/sec.

<h3> What is speed?</h3>

Speed is defined as the rate of change of the distance or the height attained.

The given data in the problem is;

The initial diameter is,\rm d_1 = 2.2 \ cm

initial radius,

r_1 = \frac{d_1}{2} \\\\ r_1 = \frac{2.2}{2} \\\\ r_1 = 1.1\ cm

The initial crossection area;

\rm A_1 = \pi r_1^2 \\\\ \rm A_1 = 3.14 \times  (1.1\times 10^{-2})^2 \\\\ \rm A_1 =3.8 \times 10^{-4} \ m^2

The final crossection area;

\rm A_2 = \pi r_2^2 \\\\ \rm A_2 = 3.14 \times ( 2 \times 10^{-2})^2 \\\\ \rm A_2 = 12.56 \ m^2

The initial flow rate is;

R = density ×velocity ×area

\rm R = \rho A V \\\\ 1.5 = 1000 \times V_1 \times 3.8 \times 10^{-4} \\\\ V_1  = 3.947 \ m/sec

The speed of the water in the wider part will be;

From the continuity equation;

\rm A_1 V_1 = A_2V_2  \\\\\ 3.8 \times 10^{-4} \times 3.947 = 12.56 \times 10^{-4} \times V_2 \\\\ V_2= 1.194 \ m/sec

Hence, the speed of the water in the wider part will be 1.194 m/sec.

To learn more about the speed, refer to the link;

brainly.com/question/7359669

#SPJ1

7 0
2 years ago
A rugby player sits on a scrum machine that weighs 200 Newtons. Given that the coefficient of static friction is 0.67, the coeff
Trava [24]

a. 850 N is the minimum force needed to get the machine/player system moving, which means this is the maximum magnitude of static friction between the system and the surface they stand on.

By Newton's second law, at the moment right before the system starts to move,

• net horizontal force

∑ F[h] = F[push] - F[s. friction] = 0

• net vertical force

∑ F[v] = F[normal] - F[weight] = 0

and we have

F[s. friction] = µ[s] F[normal]

It follows that

F[weight] = F[normal] = (850 N) / (0.67) = 1268.66 N

where F[weight] is the combined weight of the player and machine. We're given the machine's weight is 200 N, so the player weighs 1068.66 N and hence has a mass of

(1068.66 N) / g ≈ 110 kg

b. To keep the system moving at a constant speed, the second-law equations from part (a) change only slightly to

∑ F[h] = F[push] - F[k. friction] = 0

∑ F[v] = F[normal] - F[weight] = 0

so that

F[k. friction] = µ[k] F[normal] = 0.56 (1268.66 N) = 710.45 N

and so the minimum force needed to keep the system moving is

F[push] = 710.45 N ≈ 710 N

4 0
2 years ago
Consider two different rods. The greatest thermal conductivity will be in the rod with:
sergey [27]

Answer:

Options A and D are correct

Explanation:

The thermal conductivity of a metal is the property of a metal to allow heat flow through it. conductivity is higher in conductors and low in insulators. Thermal conductivity is high in metals due to the metallic bonds that exist in metals and the presence of free electrons within the metal which allow easy flow of heat from one atom to another.From the problem the rod which contains freer electrons will allow more heat to flow easily hence have a higher thermal conductivity.

Thermal conductivity has the formula below;

k= \frac{QL}{AΔT}

  • k is thermal conductivity,
  • A is cross sectional area
  • L is length of rod
  • Q is quantity of heat transferred to material.
  • ΔT is temperature change.

From the above equation we can see that thermal conductivity is inversely proportional to A and directly proportional to L. This mean the rod with less area will have a higher thermal conductivity and the rod with a higher length will have higher k. Hence option C i wrong and option D is correct.

For specific heat, its very much different from thermal conductivity. Specific heat is the ability of a material to hold heat while thermal conductivity is the ability of heat to flow through a material.

4 0
3 years ago
If a rock is thrown upward on the planet Mars with a velocity of 10 m/s, its height in meters t seconds later is given by y= 10t
spin [16.1K]

Answer:

a)

i) v = 4.42 m/s

ii) v = 5.36 m/s

iii) v = 6.1 m/s

iv) v = 6.26 m/s

v) v = 6.28 m/s

b) The instantaneous velocity at t = 1 is 6.28 m/s

Explanation:

a) The average velocity is the variation of the position over time. It is expressed as follows:

v = Δy/Δt

Where

v = average velocity

Δy = displacement = final position - initial position

Δt = variation of time = final time - initial time

i) Let´s find the position at both times and then apply the equation for the average velocity:

y(t) = 10 · t - 1.86 · t²

y(1 s) = 10 m/s · 1 s - 1.86 m/s² · (1 s)²

y = 8.14 m

y (2 s) = 10 m/s · 2 s - 1.86 m/s² · (2 s)²

y = 12.56 m

Then, the average velocity  will be:

v = final position - initial position / final time - initial time

v = 12.56 m - 8.14 m / 2 s - 1 s = 4.42 m/s

ii) We proceed in the same way as in i)

y(1.5 s) = 10 m/s · 1.5 s - 1.86 m/s² · (1.5 s)²

y = 10.82 m

v = 10.82 m - 8.14 m / 1.5 s - 1 s = 5.36 m/s

iii)

y(1.1 s) = 10 m/s · 1.1 s - 1.86 m/s² · (1.1 s)²

y = 8.75 m

v = 8.75 m - 8.14 m / 1.1 s - 1 s = 6.1 m/s

iv)

y(1.01 s) = 10 m/s · 1.01 s - 1.86 m/s² · (1.01 s)²

y = 8.20 m

v = 8.20 m - 8.14 m / 1.01 s - 1 s = 6 m/s ( 6.26 m/s without rounding the y-final value)

v)

y(1.001 s) = 10 m/s · 1.001 s - 1.86 m/s² · (1.001 s)²

y = 8.146

v = 8.146 m - 8.14 m  / 1.001 s - 1 s = 6 m/s  (6.28 m/s without rounding the value of y-final)

b) The instantaneous velocity is given by the derivative of the position function:

y = 10 · t - 1.86 · t²

dy/dt = 10 - 2 · 1.86 · t  = 10 - 3.72 · t

At t = 1

v = 10 m/s - 3.72 m/s² · 1 s = 6.28 m/s

4 0
3 years ago
A machinist turns the power on to a grinding wheel, at rest, at time t = 0 s. The wheel accelerates uniformly for 10 s and reach
Nookie1986 [14]

Answer:489 Revolutions

Explanation:

Given

Angular deceleration(\alpha ) =1.5rad/s^2

Given wheel angular velocity =96 rad/s when machine is turned off

time taken by machine to reach zero angular velocity

0=\omega _0+(\alpha)t

0=96+(-1.5)t

t=64 sec

angular displacement is given by

\theta =\omega_0t+\frac{1}{2}\alpha t^2

\theta =96(64)-\frac{1}{2}(-1.5)(64^2)=3072 degree

For revolutions =\frac{3072}{2\cdot \pi}=488.86 \approx 489 revolution during Slowdown

5 0
3 years ago
Other questions:
  • During a baseball game, a batter hits a high pop-up. If the ball remains in the air for 6.22 s, how high does it rise? The accel
    13·1 answer
  • Super Invar, an alloy of iron and nickel, is a strong material with a very Low coefficient of thermal expansion (0.20x10^-6/°C).
    9·1 answer
  • Most marble is composed primarily of
    7·1 answer
  • If you were on a ship at sea, and a tsunami passed under your ship, what would probably be your reaction? explain.
    15·1 answer
  • In freefall, heavier objects fall with a greater acceleration than lighter objects.
    10·2 answers
  • Most solar energy that reaches earths atmospere is ..
    10·1 answer
  • Is the same side of the moon always dark? Explain please.
    9·2 answers
  • In each of the cases shown in the figure, the block has been displaced by the same amount from equilibrium. Rank the cases based
    11·2 answers
  • HELPPPPP it’s due in 10 minutes
    13·1 answer
  • 2. A girl of weight 400 N has feet of area 100 cm2. What
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!