<u>The answer is not contained detail explanation, just a solution and the required values. </u>
All the details are in the pictures, the answers are marked with orange colour.
Note,
in the task no 20.:

V - the velocity of the pair of the balls after collision.
in the task no 21:
m₁ - the mass of the copper ball; m₂ - the mass of the copper calorimeter; m₃ - the mass of the water; t₀ - the initial temperature of water in the copper calorimeter; θ - the final temperature in the calorimeter after the copper ball is transferred into a copper calorimeter; t₁ - the required initial temperature of the copper ball before it is transferred into the calorimeter.
Although they're all 'close', none of the planets orbits in the same plane as any other planet. They're all in slightly different planes.
The farthest out compared to all the others is Pluto, with an orbit inclined about 17 degrees compared to the ecliptic plane (Earth's orbit). But Pluto is officially not a planet, so I don't think it's a good answer.
The next greatest inclination compared to Earth's orbit is <em>Mercury</em>. That one is about 7 degrees.
The other six planets are all in different orbital planes inclined less than 7 degrees compared to Earth's orbit.
Answer:
Explanation:
Magnitude of frictional force = μ mg
μ is either static or kinetic friction.
To start the crate moving , static friction is calculated .
a ) To start crate moving , force required = μ mg where μ is coefficient of static friction .
force required =.517 x 56.6 x 9.8 = 286.76 N .
b ) to slide the crate across the dock at a constant speed , force required
= μ mg where μ is coefficient of kinetic friction , where μ is kinetic friction
= .26 x 56.6 x 9.8 = 144.21 N .
Answer: 11.5secs
Explanation:
They said what the average speed is so to find the average you have to find the mean so 17secs + 6secs = 23secs / 2 = 11.5secs.