Answer:
Name Atomic Number Electron Configuration Period 1 Hydrogen 1 1s1 Helium 2 1s2 Period 2 Lithium 3 1s2 2s1 Beryllium 4 1s2 2s2 Boron 5 1s2 2s22p1 Carbon 6 1s2 2s22p2 Nitrogen 7 1s2 2s22p3 Oxygen 8 1s2 2s22p4 Fluorine 9 1s2 2s22p5 Neon 10 1s2 2s22p6 Period 3 Sodium 11 1s2 2s22p63s1 Magnesium 12 1s2 2s22p63s2 Aluminum 13
Answer:
A - Increase (R), Decrease (P), Decrease(q), Triple both (Q) and (R)
B - Increase(P), Increase(q), Decrease (R)
C - Triple (P) and reduce (q) to one third
Explanation:
<em>According to Le Chatelier principle, when a system is in equilibrium and one of the constraints that affect the rate of reaction is applied, the equilibrium will shift so as to annul the effects of the constraint.</em>
P and Q are reactants, an increase in either or both without an equally measurable increase in R (a product) will shift the equilibrium to the right. Also, any decrease in R without a corresponding decrease in either or both of P and Q will shift the equilibrium to the right. Hence, Increase(P), Increase(q), and Decrease (R) will shift the equilibrium to the right.
In the same vein, any increase in R without a corresponding increase in P and Q will shift the equilibrium to the left. The same goes for any decrease in either or both of P and Q without a counter-decrease in R will shift the equilibrium to the left. Hence, Increase (R), Decrease (P), Decrease(q), and Triple both (Q) and (R) will shift the equilibrium to the left.
Any increase or decrease in P with a commensurable decrease or increase in Q (or vice versa) with R remaining constant will create no shift in the equilibrium. Hence, Triple (P) and reduce (q) to one third will create no shift in the equilibrium.
The sugars (c6h12o6) or the glucose that is made during photosynthesis is turned into glucose cellulose or starch that the plant can use for energy and food for the plant. Hope this helps.
Gold is an element. Water is made from hydrogen and oxygen, and silicon dioxide is an oxide of silicon, consisting of <span> two oxygen atoms and one silicon</span>