Answer:
Explanation:
Answer is in the attachment below:
Answer:
A. kinetic energy
B. angular velocity
E. angular position
Explanation:
The quantities that cannot be constant if a constant net torque is exerted on an objecta are:
A. Kinetic energy. If a torque is applied, the linear or angular speed will be changing at a rate proportional to the torque, so the kinetic energy will change too.
B. Angular velocity. It will change at a rate equal to the torque.
C. Angular position. If the angular velocity changes, the angular position will change.
Answer:
2,500 watts
Explanation:
I got this answer right on a test. I hope it works for you to.
<h3><u>
Full question:</u></h3>
Which statements describe the Mercalli scale? Check all that apply.
A. This scale measures seismic waves based on their size.
B. This scale rates an earthquake according to how much damage it causes.
C.This scale produces a single rating for earthquakes that reach the surface.
D. This scale uses Roman numerals to rank the damage caused by an earthquake.
E.This scale measures the magnitude of an earthquake based on the size of seismic waves.
<h3><u>
Answer:</u></h3>
The Mercalli scale : This scale rates an earthquake according to how much damage it causes and This scale uses Roman numerals to rank the damage caused by an earthquake.
<h3><u>
Explanation:</u></h3>
The Modified Mercalli scale is intended to illustrate the consequences of an earthquake, at a contracted station, on tangible characteristics, on modern fittings and human beings.
The Modified Mercalli Intensity value ascribed to a particular site subsequent an earthquake has an extra significant means of severity to the nonscientist than the magnitude because intensity assigns to the outcomes really encountered at that position. This scale is comprised of 12 growing levels of intensity, denoted by Roman numerals, arranging from gradual shaking to catastrophic impairment.
consider the velocity towards the pitcher as positive
m = mass of the baseball = 0.145 kg
v₀ = initial velocity of the baseball = - 39 m/s
v = final velocity of the baseball = 52 m/s
t = time of contact = 3 x 10⁻³ sec
F = average force between bat and ball
Using impulse-change in momentum equation
F t = m (v - v₀ )
F (3 x 10⁻³) = (0.145) (52 - (- 39))
F = 4398.33 N