The object does not move.
Answer:
<em>The distance covered by comet is </em>
Explanation:
Speed is defined as the rate of change of distance with time. It is given by the equation speed= 
Thus distance= 
In this problem it is given that speed of comet= 
time travelled by the comet= 4 hours
Thus distance= 
= 
= 
Answer:
Mass of Jupiter = 4.173×10^15kg
Explanation:
Using Kepler's 3rd law, it states that the orbital period T is related to the distance,r as:
T^2 = GM/4 pi × r^3
Where G = universal gravitational constant
r = radius
M = masd of jupiter
Rearranging the formular to make M the subject of formular
T^2 × 4 pi = G M × r^3
(T^2 × 4 pi) / (G× r^3) = M
(1.24^2 × 4 × 3.142) /(6.672×10^-11)(4.11×10^8)^3
M = 19.32 /6.672×10^-11)(4.11×10^8)^3
M = 19.32 / 4.63 ×10^15
M = 4.173×10^15kg
Answer:
θ_p = 53.0º
Explanation:
For reflection polarization occurs when a beam is reflected at the interface between two means, the polarization in total when the angle between the reflected and the transmitted beam is 90º
Let's write the transmission equation
n1 sin θ₁ = ne sin θ₂
The angle to normal (vertcal) is
180 = θ2 + 90 + θ_p
θ₂ = 90 - θ_p
Where θ₂ is the angle of the transmitted ray θ_p is the angle of the reflected polarized ray
We replace
n1 sin θ_p = n2 sin (90 - θ_p)
Let's use the trigonometry relationship
Sin (90- θ_p) = sin 90 cos θ_p - cos 90 sin θ_p = cos θ_p
In the law of reflection incident angle equals reflected angle,
ni sin θ_p = ns cos θ_p
n₂ / n₁ = sin θ_p / cos θ_p
n₂ / n₁ = tan θ_p
θ_p = tan⁻¹ (n₂ / n₁)
Now we can calculate it
The refractive index of air is 1 (n1 = 1) the refractive index of seawater varies between 1.33 and 1.40 depending on the amount of salts dissolved in the water
n₂ = 1.33
θ_p = tan⁻¹ (1.33 / 1)
θ_p = 53.0º
n₂ = 1.40
θ_p = tan⁻¹ (1.40 / 1)
Tep = 54.5º