Answer:
3.196 m/s
Explanation:
Parameters given:
Mass of Brittany and the skateboard, M = 62 kg
Mass of pumpkin, m = 3.7 kg
Initial speed of Brittany and the skateboard, U = 0 m/s
Final velocity of Brittany, the skateboard and the pumpkin, V = v = 0.18 m/s
We can solve this problem by applying the principle of conservation of momentum.
It states that the total final momentum of a system is equal to the total initial momentum of the system.
M*U + m*u = M*V + m*v
Where u is the initial velocity of the pumpkin.
Since the final velocity of Brittany and the skateboard is equal to the final velocity of pumpkin:
M*U + m*u = (M + m) *v
Solving this to get u:
(62 * 0) + (3.7 * u) = (62 + 3.7) * 0.18
0 + 3.7u = 65.7 * 0.18
3.7u = 11.826
u = 11.826 / 3.7
u = 3.196 m/s
The initial velocity of the pumpkin was 3.196 m/s.
A- plane mirror because its surface is plane
Answer:
If you meant 2.34, 2.34 meters = 23.4 decimeters.
Formula: multiply the value in meters by the conversion factor '10'.
So, 2.34 meters = 2.34 × 10 = 23.4 decimeters.
Hope that helps. x
Answer:
L' = 555.95 lb
Explanation:
Analyzing the given conditions in the question, we get
The safe load, L is directly proportional to width (w) and square of depth (d²)
also,
L is inversely proportional length (l) i.e L = k/l
combining the above conditions, we get an equation as:
L = k(wd²/l)
now, for the first case we have been given
w = 3 in
d = 6 in
l = 11 ft
L = 1213 lbs
thus,
1213 lb = k ((3 × 6²)/11)
or
k = 123.54 lbs/(ft.in³)
Now,
Using the calculated value of k to calculate the value of L in the second case
in the second case, we have
w = 6 in
d =3 in
l = 12 ft
Final Safe load L' = 123.54 × (6 × 3²/12)
or
L' = 555.95 lb
Here is a link that should help you out
http://instituteforenergyresearch.org/topics/encyclopedia/fossil-fuels/