Well we know it has to be greater than 300,000 km/s since we can't see it.
We can't calculate it any closer than that using the given information.
I) You walk barefoot on the hot street and it burns your toes.
The road is in direct contact with your skin. Thermal energy from the road will transfer to the bottom of your feet, then to the rest of your body. This is an example of conduction.
II) When you get into a car with hot black leather in the middle of the summer and your skin starts to get burned.
Just like in the previous example, the hot leather is in direct contact with your skin (I guess if you're going to drive naked). Thermal energy from the leather will transfe to your skin, then to the rest of your body. This is also conduction.
III) A flame heats the air inside a hot air balloon and the balloon rises.
The flame heats air directly at the bottom of the balloon. The warm air expands and becomes less dense. This will rise and let the unheated, denser air in the balloon fall down toward the flame. This is an example of the convection cycle.
IV) A boy sits to the side of a campfire. He is 10 feet away, but still feels warm.
The campfire heats air directly nearby. The warm air expands and moves away from the fire in all directions, leaving behind unheated, denser air to be heated up. Some of the warm air reaches the boy. This is another example of convection.
The answer is A) 1 and 2.
Kinetic and Potential Energy HistoryA roller coaster train going down hill represents merely a complex case as a body is descending an inclined plane. Newton's first two laws relate force and acceleration, which are key concepts in roller coaster physics. At amusement parks, Newton's laws can be applied to every ride. These rides range from 'The Swings' to The 'Hammer'. Newton was also one of the developers of calculus which is essential to analyzing falling bodies constrained on more complex paths than inclined planes. A roller coaster rider is in an gravitational field except with the Principle of Equivalence.Potential EnergyPotential energy is the same as stored energy. The "stored" energy is held within the gravitational field. When you lift a heavy object you exert energy which later will become kinetic energy when the object is dropped. A lift motor from a roller coaster exerts potential energy when lifting the train to the top of the hill. The higher the train is lifted by the motor the more potential energy is produced; thus, forming a greater amount if kinetic energy when the train is dropped. At the top of the hills the train has a huge amount of potential energy, but it <span>has very little kinetic energy.Kinetic Energy The word "kinetic" is derived from the Greek word meaning to move, and the word "energy" is the ability to move. Thus, "kinetic energy" is the energy of motion --it's ability to do work. The faster the body moves the more kinetic energy is produced. The greater the mass and speed of an object the more kinetic energy there will be. Hope this helped:))))</span>
It will decay into Silicon-30. Because alpha particles are 2 protons and 2 neutrons with an atomic mass of 4, you minus sulfur's atomic number by 2 and get silicon. And the atomic mass is 34 - 4 which equals 30.
Answer:
W₂= 10000 N
Explanation:
Pascal´s Principle can be applied in the hydraulic press:
If we apply a small force (F1) on a small area piston A1, then, a pressure (P) is generated that is transmitted equally to all the particles of the liquid until it reaches a larger area piston and therefore a force (F2) can be exerted that is proportional to the area (A2) of the piston:
Pressure is defined as the force (F) applied per unit area (A)
P=F/A (N/m²)
P1=P2

Equation (1)
Data
W₁ = weight sits on the small piston
F₁ = W₁= 500 N
A₁ = 2.0 cm²
A₂ = 40 cm²
Calculation of the weight (W₂) can the large piston support
We replace data in the equation (1)
F₂ = 10000 N
W₂= F₂= 10000 N