F=ma
Mass times acceleration
We have g (10ms^_2) and a (1 given)
So total would be
10 kg times (10+1) =
110 N
As long as it sits on the shelf, its potential energy
relative to the floor is . . .
Potential energy = (mass) x (gravity) x (height) =
(3 kg) x (9.8 m/s²) x (0.8m) = <u>23.52 joules</u> .
If it falls from the shelf and lands on the floor, then it has exactly that
same amount of energy when it hits the floor, only now the 23.52 joules
has changed to kinetic energy.
Kinetic energy = (1/2) x (mass) x (speed)²
23.52 joules = (1/2) x (3 kg) x (speed)²
Divide each side by 1.5 kg : 23.52 m²/s² = speed²
Take the square root of each side: speed = √(23.52 m²/s²) = <em>4.85 m/s </em> (rounded)
Answer:
65.87 s
Explanation:
For the first time,
Applying
v² = u²+2as.............. Equation 1
Where v = final velocity, u = initial velocity, a = acceleration, s = distance
From the question,
Given: u = 0 m/s (from rest), a = 1.99 m/s², s = 60 m
Substitute these values into equation 1
v² = 0²+2(1.99)(60)
v² = 238.8
v = √238.8
v = 15.45 m/s
Therefore, time taken for the first 60 m is
t = (v-u)/a............ Equation 2
t = (15.45-0)/1.99
t = 7.77 s
For the final 40 meter,
t = (v-u)/a
Given: v = 0 m/s(decelerates), u = 15.45 m/s, a = -0.266 m/s²
Substitute into the equation above
t = (0-15.45)/-0.266
t = 58.1 seconds
Hence total time taken to cover the distance
T = 7.77+58.1
T = 65.87 s
Answer:
two people who are not going to be able to make it to class today because of the day and then I will be there at the house and then we can go
Answer:
Momentum, 
Explanation:
The wave function of a particle is given by :
...............(1)
Where
x is the distance travelled
t is the time taken
k is the propagation constant
is the angular frequency
The relation between the momentum and wavelength is given by :
............(2)
From equation (1),


Use above equation in equation (2) as :

Since, 

So, the x-component of the momentum of the particle is
. Hence, this is the required solution.