Answer:
I mean this is what I think
Explanation:
you would need to place a rock on top of each other until you reach the ceiling
It seems logical to me
Answer: A projectile is any object in which the only force is gravity
Explanation: Equations on how to calculate projectile velocity is stated below:
The initial velocity Vo being a vector quantity, has two componentsVox and Voy
V0x = V0 cos(θ)
V0y = V0 sin(θ)
The acceleration A is a also a vector with two components Axand Ay given
Ax = 0 and Ay = - g = - 9.8 m/s2
Along the x axis the acceleration is equal to 0 and therefore the velocity Vx is constant
Vx = Vocos(θ)
Along the y axis, the acceleration is uniform and equal to - g and the velocity at time t is g
Vy = Vo sin(θ) - g t
Along the x axis the velocity Vx is constant and therefore the component x of the displacement is
x = Vocos(θ) t
Along the y axis, the motion is of uniform acceleration and the y component of the displacement is
y = Vo sin(θ) t - (1/2) g t2
Answer:
These forces are all equal and cancel each other out. Gravity pushes downward on the ice cream. This can also be called the weight of the ice cream. Buoyant force pushes the ice cream upward
Answer:
Time interval;Δt ≈ 37 seconds
Explanation:
We are given;
Angular deceleration;α = -1.6 rad/s²
Initial angular velocity;ω_i = 59 rad/s
Final angular velocity;ω_f = 0 rad/s
Now, the formula to calculate the acceleration would be gotten from;
α = Change in angular velocity/time interval
Thus; α = Δω/Δt = (ω_f - ω_i)/Δt
So, α = (ω_f - ω_i)/Δt
Making Δt the subject, we have;
Δt = (ω_f - ω_i)/α
Plugging in the relevant values to obtain;
Δt = (0 - 59)/(-1.6)
Δt = -59/-1.6
Δt = 36.875 seconds ≈ 37 seconds
Answer:
Explanation:
Current, I = 6 A
diameter of wire, d = 2.05 mm
number of electrons per unit volume, n = 8.5 x 10^28
If the diameter is doubled,
The resistance of the wire is inversely proportional to the square of the diameter of the wire, so the resistance is one forth an the current is directly proportional to the diameter of the wire so the current is four times the initial value.