Explanation:
The dipoles in CO are in opposite directions so they cancel each other out, although CO₂ has polar bonds, it is a nonpolar molecule. Therefore, the only intermolecular forces are London dispersion forces. Water (H2O) has hydrogen bond present which is a polar bond which has a high intermolecular force.
Water which has high intermolecular force will require more energy that is a higher temperature to overcome these attractions and are pulled together tightly to form a solid at higher temperatures, so their freezing point is higher.
As the temperature of a liquid decreases, the average kinetic energy of the molecules decreases and they move more slowly.
CO with lower intermolecular forces will not solidify until the temperature is lowered further.
Answer:
Following are the responses to the given choices:
Explanation:
- The RBC crenation is implied through NaCl by 2,67 percent(m/v) because that solution becomes hypertonic to RBC because of the water within the RBC that passes externally towards the outskirts. RBC thus shrinks.
- 1.13% (m/v), because the low concentration or osmotic that all this solution shows is hypotonic regarding RBC because of the water which has reached the resulting swelling in RBC.
- Distilled H2 implies hemolytic distillation.
- Glucose is indicated by crenation at 8.69 percent (m/v).
- 5.0% (m/v) glucose and 0.9% (m/v) (Crenation is indicated by NaCl.v)
Complete ionic:
Cu(aq) + 2Cl(aq) + 8O(aq) + 2Na(aq) + C(aq) + 3O(aq) = CaCO3(s) + 2Na(aq) + Cl(aq) + 4O(aq)
Net ionic:
Cu(aq) + Cl(aq) + 4O(aq) + 2Na(aq) + C(aq) + 3O(aq) = CaCO3(s)
So write everything out as IF it will dissociate in water. So everything that is aq splits but solid just floats to the bottom of the mixture. Cancel what you can (in this case the two from the ClO4 on the left of the equation cancels with the ClO4 from the right) and the 2Na cancels. Then, write out the whole solution and you are done!
Harmonic melody and something else hold on...checking
Answer:
glucose and oxygen
Explanation:
plants use carbondioxide, water and sunlight to produce their food through photosynthesis so in return they produce oxygen into the air as by product and glucose