Answer: The value of x is -6.
Explanation:
To calculate the value of 'x', we need to solve each function happening inthe equation.
The equation provided to us is 
To solve this, we will multiply 4x with 2 and then subtract the like terms and finally, we evaluate the value of 'x'.

Hence, the value of x will be -6.
When it gets hot, rails expand. The gaps in the track allow for it to expand straight, but if there were no gaps, it could expand in unexpected directions, so it could be very dangerous for a train to go over it because they could be bent.
An applied force must be applied to move a load. This applied force must be large enough to overcome any opposing forces in order to move the load.
Answer:
A
Explanation:
The distance between the water molecules increases. As temperature increases the water molecules gain energy and move more rapidly and this results in the molecules getting further apart
First, let us derive our working equation. We all know that pressure is the force exerted on an area of space. In equation, that would be: P = F/A. From Newton's Law of Second Motion, force is equal to the product of mass and gravity: F = mg. So, we can substitute F to the first equation so that it becomes, P = mg/A. Now, pressure can also be determined as the force exerted by a fluid on an area. This fluid can be measure in terms of volume. Relating volume and mass, we use the parameter of density: ρ = m/V. Simplifying further in terms of height, Volume is the product of the cross-sectional area and the height. So, V = A*h. The working equation will then be derived to be:
P = ρgh
This type of pressure is called the hydrostatic pressure, the pressure exerted by the fluid over a known height. Next, we find the literature data of the density of seawater. From studies, seawater has a density ranging from 1,020 to 1,030 kg/m³. Let's just use 1,020 kg/m³. Substituting the values and making sure that the units are consistent:
P = (1,020 kg/m³)(9.81 m/s²)(11 km)*(1,000 m/1km)
P = 110,068,200 Pa or 110.07 MPa