Given :
A mover slides a refrigerator weighing 650 N at a constant velocity across the floor a distance of 8.1 m.
The force of friction between the refrigerator and the floor is 230 N.
To Find :
How much work has been performed by the mover on the refrigerator.
Solution :
Since, refrigerator is moving with constant velocity.
So, force applied by the mover is also 230 N ( equal to force of friction ).
Now, work done in order to move the refrigerator is :

Hence, this is the required solution.
Answer:
The maximum value of the driving force is 1044.01 N.
Explanation:
Given that,
Weight of the object, W = 50 N
Force constant of the spring, k = 210 N/m
The system is undamped and is subjected to a harmonic driving force of frequency 11.5 Hz.
Amplitude, A = 4 cm
We need to find the maximum value of the driving force. The force is given by the product of mass and maximum acceleration as :
.....(1)
A is amplitude
m is mass,

is angular frequency
Angular frequency is given by :

Equation (1) becomes :

So, the maximum value of the driving force is 1044.01 N.
Answer:
The dependent variable is the variable that is studied while the independent variable is the variable that is being manipulated
The potential energy of a 25 kg bicycle resting at the top of a hill 3 m high will be 735.75 J.
<h3>What is potential energy?</h3>
The potential energy is due to the virtue of the position and the height. The unit for the potential energy is the joule.
The potential energy is mainly depending upon the height of the object. when the cyclist is at the highest position, the height is maximum. Therefore, the potential energy is also maximum.
The potential energy is found as;
PE=mgh
PE=25 kg× 9.81 m/s² ×3 m
PE= 735.75 J.
Hence, the potential energy of a 25 kg bicycle resting at the top of a hill 3 m high will be 735.75 J.
To learn more about the potential energy, refer to the link;
brainly.com/question/24284560
#SPJ1
Need more than that to answer this question