Answer:
2.28
Explanation:
HCl(l) ===> H+ + cl-
HCl is a very strong acid. Almost all of it will decompose to the right. That means the concentration of H+ is 0.00530
pH = - log [H+]
pH = - log[0.00530]
pH = - - 2.2757
pH = 2.2757
Rounded this 2.28
Answer:
4190.22 L = 4.19 m³.
Explanation:
- For the balanced reaction:
<em>2P₂ + 5O₂ ⇄ 2P₂O₅. </em>
It is clear that 2 mol of P₂ react with <em>5 mol of O₂ </em>to produce <em>2 mol of P₂O₅.</em>
- Firstly, we need to calculate the no. of moles of 6.92 kilograms of P₂O₅ produced through the reaction:
no. of moles of P₂O₅ = mass/molar mass = (6920 g)/(283.88 g/mol) = 24.38 mol.
- Now, we can find the no. of moles of O₂ is needed to produce the proposed amount of P₂O₅:
<u><em>Using cross multiplication:</em></u>
5 mol of O₂ is needed to produce → 2 mol of P₂O₅, from stichiometry.
??? mol of O₂ is needed to produce → 24.38 mol of P₂O₅.
∴ The no. of moles of O₂ needed = (5 mol)(24.38 mol)/(2 mol) = 60.95 mol.
- Finally, we can get the volume of oxygen using the general law of ideal gas:<em> PV = nRT.</em>
where, P is the pressure of the gas in atm (P = 606.1 mm Hg/760 = 0.8 atm).
V is the volume of the gas in L (V = ??? L).
n is the no. of moles of the gas in mol (n = 60.95 mol).
R is the general gas constant (R = 0.0821 L.atm/mol.K),
T is the temperature of the gas in K (396.90°C + 273 = 669.9 K).
∴ V of oxygen needed = nRT/P = (60.95 mol)(0.0821 L.atm/mol.K)(669.9 K)/(0.8 atm) = 4190.22 L/1000 = 4.19 m³.
Answer:
Conditions are optimal for upwelling along the coast when winds blow along the shore. Winds blowing across the ocean surface push water away. Water then rises up from beneath the surface to replace the water that was pushed away. This process is known as “upwelling.”
Explanation: