IBM and others are using copper instead of aluminum in the most powerful computer chips they manufacture. Because of copper's superior electrical conductivity, this technology enables conductor channel lengths and widths to be significantly reduced.
In the past, restaurants had four hours, straight through, to cool food to 41°F or lower. Now the FDA recommends cooling food in two stages -- from 135°F to 70°F in two hours then from 70°F to 41°F or lower in an additional four hours for a total cooling time of six hours
Explanation:
the two-stage cooling method<span> is a </span><span>Food Code </span>counselled<span> procedure for cooling food in restaurants and foodservice </span>institutions<span>. </span>within the<span> two-stage cooling </span>methodology<span>, food is</span><span> cooled from 140° F (60° C) to 70° F (21° C) </span>among 2<span> hours and to 41° F (5° C) or lower </span>among<span> four hours. Use of this cooling </span>methodology<span> ensures that food is cooled quickly and safely and has no harmful effects.</span>
Answer:
What type of question is this?
Explanation:
Answer:
10.64
Explanation:
Let's consider the basic reaction of cyclohexamine, C₆H₁₁NH₂.
C₆H₁₁NH₂(aq) + H₂O(l) ⇄ C₆H₁₁NH₃⁺(aq) + OH⁻ pKb = 3.36
C₆H₁₁NH₃⁺ is its conjugate acid, since it donates H⁺ to form C₆H₁₁NH₂. C₆H₁₁NH₃⁺ acid reaction is as follows:
C₆H₁₁NH₃⁺(aq) + H₂O(l) ⇄ C₆H₁₁NH₂(aq) + H₃O⁺(aq) pKa
We can find the pKa of C₆H₁₁NH₃⁺ using the following expression.
pKa + pKb = 14.00
pKa = 14.00 - pKb = 14.00 - 3.36 = 10.64
There will be 7.5 g of Be-11 remaining after 28 s.
If 14 s = 1 half-life, 28 s = 2 half-lives.
After the first half-life, ½ of the Be-11 (15 g) will disappear, and 15 g will remain.
After the second half-life, ½ of the 15 g (7.5 g) will disappear, and 7.5 g will remain.
In symbols,
<em>N</em> = <em>N</em>₀(½)^<em>n</em>
where
<em>n</em> = the number of half-lives
<em>N</em>₀ = the original amount
<em>N</em> = the amount remaining after <em>n</em> half-lives