Answer:
MoClBr₂
Explanation:
First we calculate the mass of bromine in the compound:
- 300.00 g - (82.46224 g + 45.741 g) = 171.79676 g
Then we<u> calculate the number of moles of each element</u>, using their <em>respective molar masses</em>:
- 82.46224 g Mo ÷ 95.95 g/mol = 0.9594 mol Mo
- 45.741 g Cl ÷ 35.45 g/mol = 1.290 mol Cl
- 171.79676 g Br ÷79.9 g/mol = 2.150 mol Br
Now we <u>divide those numbers of moles by the lowest number among them</u>:
- 0.9594 mol Mo / 0.9594 = 1
- 1.290 mol Cl / 0.9594 = 1.34 ≅ 1
- 2.150 mol Br / 0.9594 = 2.24 ≅ 2
Meaning the empirical formula is MoClBr₂.
Answer:
1. 505g is the mass of the aluminium.
2. The answer is in the explanation
Explanation:
1. To solve this question we need to find the volume of the rectangle. With the volume and density we can find the mass of the solid:
Volume = 7.45cm*4.78cm*5.25cm
Volume = 187cm³
Mass:
187cm³ * (2.702g/cm³) = 505g is the mass of the aluminium
2. When the temperature of a liquid increases, the volume increases doing the density decreases because density is inversely proportional to volume. And works in the same way for gases because the temperature produce more collisions and the increasing in volume.
The changes that are common between sauce burning on a stove, and jewelry tarnishing, which is a chemical change.
How to define chemical and physical changes?
Chemical Change-
Any alteration that produces new chemical substances with distinct properties is considered a chemical change. Chemical reactions involve the rearrangement and recombination of elements and compounds to create new substances. Examples of chemical changes are listed below:
- Burning
- Digestion
- chemicals changing colors
- Tarnishing
- compost rotting
Physical Change-
A substance is not destroyed or transformed into something new by physical changes. A substance can undergo physical changes that alter its shape, size, or phase. The constituents of an element or compound do not change during a physical change. Examples of physical changes are listed below:
- Boiling water
- Chopping, Cutting, Carving
- Evaporation
- Freezing, Melting, Condensation
To know more about chemical and physical changes, visit the given link:
brainly.com/question/20628019
#SPJ4
<span>Answer is: pH of solution of sodium cyanide is 11.3.
Chemical reaction 1: NaCN(aq) → CN</span>⁻(aq)
+ Na⁺<span>(aq).
Chemical reaction 2: CN</span>⁻ +
H₂O(l) ⇄ HCN(aq) + OH⁻<span>(aq).
c(NaCN) = c(CN</span>⁻<span>)
= 0.021 M.
Ka(HCN) = 4.9·10</span>⁻¹⁰<span>.
Kb(CN</span>⁻) = 10⁻¹⁴ ÷
4.9·10⁻¹⁰ = 2.04·10⁻⁵<span>.
Kb = [HCN] · [OH</span>⁻]
/ [CN⁻<span>].
[HCN] · [OH</span>⁻<span>] =
x.
[CN</span>⁻<span>] = 0.021 M - x..
2.04·10</span>⁻⁵<span> = x² / (0.021 M
- x).
Solve quadratic equation: x = [OH</span>⁻<span>] = 0.00198 M.
pOH = -log(0.00198 M) = 2.70.
pH = 14 - 2.70 = 11.3.</span>
If the dehydration reaction of an alcohol is successful. The changes would be seen in the IR spectrum for the product compared to the starting material are as,
- The O-H and C-O band is disappear from stating material
- The addition of a C-C double bond band in the product.
In dehydration reaction of alcohol ( O-H and C-O bond ) contain , the water molecule ( ) is release from the reactant and C-C double bond is form which is known as alkene in the product .
The reactant and product have different structure. To determine the structure of the compound IR spectroscopy is used. In IR spectrum the peak corresponds to 3400-3600 cm is missing in the product of dehydration reaction of an alcohol. It means O-H band is disappear from stating material.
learn about IR SPECTRUM
brainly.com/question/15452269
#SPJ4