Answer:
just search up a ven-diagram and then try to draw it or trace it then use it for ur question
Explanation:
Answer:
Difference in height = 7.5 cm
Explanation:
We are given;.
Height of ethyl alcohol;h2 = 20 cm = 0.2 m
Density of glycerin: ρ1 = 1260 kg/m³
Density of ethyl alcohol; ρ2 = 790 kg/m³
To get the difference in height, the pressure at the top of the open end must be equal to the pressure at the point where the liquids do not mix since both points will be at different levels after the pouring.
Thus;
P1 = P2
Formula for pressure is; P = ρgh
Thus;
ρ1 × g × h1 = ρ2 × g × h2
g will cancel out to give;
ρ1 × h1 = ρ2× h2
Making h1 the subject, we have;
h1 = (ρ2× h2)/ρ1
h1 = (790 × 0.2)/1260
h1 = 0.125 m
Difference in height will be;
Δh = h2 - h1
Δh = 0.2 - 0.125
Δh = 0.075 m = 7.5 cm
Answer:
k1 + k2
Explanation:
Spring 1 has spring constant k1
Spring 2 has spring constant k2
After being applied by the same force, it is clearly mentioned that spring are extended by the same amount i.e. extension of spring 1 is equal to extension of spring 2.
x1 = x2
Since the force exerted to each spring might be different, let's assume F1 for spring 1 and F2 for spring 2. Hence the equations of spring constant for both springs are
k1 = F1/x -> F1 =k1*x
k2 = F2/x -> F2 =k2*x
While F = F1 + F2
Substitute equation of F1 and F2 into the equation of sum of forces
F = F1 + F2
F = k1*x + k2*x
= x(k1 + k2)
Note that this is applicable because both spring have the same extension of x (I repeat, EXTENTION, not length of the spring)
Considering the general equation of spring forces (Hooke's Law) F = kx,
The effective spring constant for the system is k1 + k2
HI!! If you need answers to your exam, then go to https://quizlet.com/ then search for what you need!! I hope this helps I am not sure what your exam is for, and I don't have enough info to tell you all the answers, but hopefully, this will help you!!
Answer:
h = 1.02 m
Explanation:
This is a fluid mechanics exercise, where the pressure is given by
P =
+ ρ g h
The gauge pressure is
P -
= ρ g h
In this case the upper part of the tube we have the atmospheric pressure. and the diver can exert a pressure 10 KPa below the outside pressure, this must be the gauge pressure
= P - 
= ρ g h
h =
/ ρ g
calculate
h = 10 103 / (1000 9.8)
h = 1.02 m
This is the depth at which man can breathe