Scientific Method: Because, they use their method which the scientific one to solve investigations.
You already have the speed, now you need the time.
I will use the formula for speed which is S=D/T.
S=Speed D=Distance T=Time.
So here we have, 18m/s = 52m/T
we do 18 divided by 52 which would be .3461.
.3461 seconds is how long it took the stone to reach the water.
Part (a):
1- Since the resistors are in series, therefore, the total resistance is the summation of the two resistors.
Therefore:
Rtotal = R1 + R2 = 3.11 + 6.15 = 9.26 ohm
2- Since the two resistors are in series, therefore, the current flowing in both is the same. We will use ohm's law to get the current as follows:
V = I*R
V is the voltage of the battery = 24 v
I is the current we want to get
R is the total resistance = 9.26 ohm
Therefore:
24 = 9.26*I
I = 24 / 9.26
I = 2.59 ampere
Part (b):
To get the voltage across the second resistor, we will again use Ohm's law as follows:
V = I*R
V is the voltage we want to get
I is the current in the second resistor = 2.59 ampere
R is the value of the second resistor = 6.15 ohm
Therefore:
V = I*R
V = 2.59 * 6.15
V = 15.9285 volts
Hope this helps :)
First, we need the distance of Europe and Wolf-359 from Earth.
- The distance of Europe from Earth is:

- The distance of Wolf-359 from Earth is instead 7.795 light years. However, we need to convert this number into km. 1 light year is the distance covered by the light in 1 year. Keeping in mind that the speed of light is

, and that in 1 year there are
365 days x 24 hours x 60 minutes x 60 seconds =

, the distance between Wolf-359 and Earth is

Now we can calculate the time the spaceship needs to go to Wolf-359, by writing a simple proportion. In fact, we know that the spaceship takes 2 years to cover

, so

from which we find

, the time needed to reach Wolf-359: